兰州理工大学学报 ›› 2020, Vol. 46 ›› Issue (5): 149-154.

• 数理科学 • 上一篇    下一篇

形变微分算子代数的Poisson代数结构

高寿兰1, 吴祺伟1,2, 郑姝敏1   

  1. 1.湖州师范学院 理学院, 浙江 湖州 313000;
    2.上海大学 数学系, 上海 200444
  • 收稿日期:2019-09-11 出版日期:2020-10-28 发布日期:2020-11-06
  • 作者简介:高寿兰(1978-),女,山东无棣人,博士,副教授.
  • 基金资助:
    国家自然科学基金(11871249,11971315)

The Poisson algebra structure of the deformed Lie algebra of differential operators

GAO Shou-lan1, WU Qi-wei1,2, ZHENG Shu-min1   

  1. 1. School of Science, Huzhou University, Huzhou 313000, China;
    2. Department of Mathematics, Shanghai University, Shanghai 200444, China
  • Received:2019-09-11 Online:2020-10-28 Published:2020-11-06

摘要: Poisson代数是指同时具有代数结构和李代数结构的一类代数,其代数结构和李代数结构满足Leibniz法则.利用Z-分次, 通过Leibniz法则确定了形变微分算子代数L~的Poisson代数结构,说明了L~没有非平凡的结果Posson代数结构.

关键词: 形变微分算子代数, Poisson代数, Leibniz法则

Abstract: Poisson algebras are thealgebras having both an algebra structure and a Lie algebra structuretogether with the Leibniz law. By using the Z-gradingthe Poisson algebra structure on the deformed Lie algebra of differential operators L~ is determined, through the Leibniz law, which shows the associative Poisson algebra structure on L~ is trivial.

Key words: deformed Lie algebra of differential operators, Poisson algebra, Leibniz law

中图分类号: