兰州理工大学学报 ›› 2020, Vol. 46 ›› Issue (5): 158-165.

• 数理科学 • 上一篇    下一篇

具有变时滞的随机忆阻神经网络在固定时间内的控制同步

蒲浩1, 黄建文2, 秦进1, 王正伟1, 王杏1   

  1. 1.遵义师范学院 数学学院, 贵州 遵义 563006;
    2.西南大学 数学与统计学院, 重庆 400715
  • 收稿日期:2019-09-16 出版日期:2020-10-28 发布日期:2020-11-06
  • 作者简介:蒲浩(1986-),男,甘肃天水人,硕士,讲师.
  • 基金资助:
    国家自然科学基金(71461027),贵州省教育厅(黔教合KY字[2018]313号)

Fixed-time control synchronization of stochastic memristive neural networks with time-varying delays

PU Hao1, HUANG Jiang-wen2, QIN Jin1, WANG Zheng-wei1, WANG Xing1   

  1. 1. School of Mathematics, Zunyi Normal College, Zunyi 563006, China;
    2. School of Mathematics and Statistics, Southwest University, Chongqing 400715, China
  • Received:2019-09-16 Online:2020-10-28 Published:2020-11-06

摘要: 研究了一类具有混合变时滞的随机忆阻神经网络在固定时间内的控制同步问题. 通过集值映射,随机微分包含理论,固定时间内稳定性理论,李雅普诺夫函数,伊藤公式和一些不等式方法,在与时滞τ,随机扰动项及转换跳跃Ti相关的恰当的反馈控制器ui(t)的控制下,得到了新的该神经网络在固定时间内控制同步的充分条件.

关键词: 忆阻神经网络, 固定时间同步, 转换跳跃, 随机扰动, 变时滞, p-范数

Abstract: The fixed-time control synchronization of stochastic memristive neural networks with time-varying delays is studied. Based on the set-valued mapping, stochastic differential inclusion theory, fixed-time stability theory, Lyapunov function, I$\hat{t}$o's formula and some inequality methods, under the appropriate feedback control ui(t) which related to delay τ, statistics perturbation term and transition jump Ti, some new sufficient condition is obtained for fixed time control synchronization.

Key words: Memristive neural network, fixed-time synchronization, switching jumps, stochastic perturbations, time-varying delays, p-norm

中图分类号: