兰州理工大学学报 ›› 2020, Vol. 46 ›› Issue (4): 110-115.

• 自动化技术与计算机技术 • 上一篇    下一篇

基于Agast-Adaboost的图像匹配算法

徐铸业1, 赵小强1,2,3   

  1. 1.兰州理工大学 电气工程与信息工程学院, 甘肃 兰州 730050;
    2.兰州理工大学 甘肃省工业过程先进控制重点实验室, 甘肃 兰州 730050;
    3.兰州理工大学 国家级电气与控制工程实验教学中心, 甘肃 兰州 730050
  • 收稿日期:2019-04-03 出版日期:2020-08-28 发布日期:2020-11-10
  • 作者简介:徐铸业(1992-),男,甘肃景泰人,博士生.
  • 基金资助:
    国家自然科学基金(61763029)

Image matching algorithm based on Agast-Adaboost

XU Zhu-ye1, ZHAO Xiao-qiang1,2,3   

  1. 1. College of Electrical and Information Engineering, Lanzhou Univ. of Tech., Lanzhou 730050, China;
    2. Key Laboratory of Gansu Advanced Control for Industrial Processes, Lanzhou Univ. of Tech., Lanzhou 730050, China;
    3. National Experimental Teaching Center of Electrical and Control Engineering, Lanzhou Univ. of Tech., Lanzhou 730050, China
  • Received:2019-04-03 Online:2020-08-28 Published:2020-11-10

摘要: 针对传统浮点型特征描述算法误匹配率高、匹配率低的问题,提出了一种基于尺度空间金字塔与AGAST(adaptive and generic accelerated segment test)快速特征提取相融合的局部二进制特征匹配算法(Agast-Adaboost local binary feature matching algorithm,ALBFMA).该算法首先构建高斯尺度空间金字塔,将AGAST与尺度空间融合并提取特征点,然后用改进的Adaboost算法对特征点进行二值描述,生成特征向量,从而提高该算法的匹配速率和匹配精度.实验结果表明:与已有算法相比,该算法具有匹配精度高的优点,并且对光照、尺度及旋转有良好的鲁棒性.

关键词: 图像匹配, 尺度空间, Adaboost, 局部二进制特征

Abstract: In response to the problem of high mismatch rate and low match rate of traditional floating-point feature description algorithm,a algorithm of ALBFMA (Agast-Adaboost local binary feature matching algorithm, ALBFMA) based on AGAST and fast feature extraction is proposed in this paper. Firstly, this algorithm builds Gaussian scale space pyramid and integrates AGAST with scale space and extracts relevant feature points. Then it uses the improved Adaboost algorithm to conduct binary description for those feature points to generate the feature vector, thus providing a high matching rate and matching accuracy of the algorithm. Our experimental results show that compared with the existing algorithms, the proposed algorithm has advantages of high matching accuracy, and have good robustness for lighting, scale and rotation.

Key words: image matching, scale space, Adaboost, local binary feature

中图分类号: