[1] CHANG K C,PEARSON K,ZHANG T.Perron-frobenius theorem for nonnegative tensors [J].Commun Math Sci,2008,6(2):507-520. [2] LATHAUWER L D,MOOR B D,VANDEWALLE J.On the best rank-1 and rank-approximation of higer-order tensors [J].SIAM J Matrix Anal Appl,2000,21(4):1324-1342. [3] LIU Y J,ZHOU G L,IBRAHIM N F.An always convergent algorithm for the largest eigenvalue of an irreducible nonnegative tensor [J].J Comput Appl Math,2010,235(1):286-292. [4] NG M,QI L Q,ZHOU G L.Finding the largest eigenvalue of a nonnegative tensor [J].SIAM J Matrix Anal Appl,2009,31(3):1090-1099. [5] QI L Q.Eigenvalues of a real supersymmetric tensor [J].J Symbolic Comput,2005,40(6):1302-1324. [6] LIM L H.Singular values and eigenvalues of tensors: a variational approach, in Proceeding of the FirstIEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing [C].Mexico:Puerto Vallarta,2005:129-132. [7] KOFIDIS E,REGALIA P A.On the best rank-1 approximation of higher-order supersymmetric tensors [J].SIAM J Matrix Anal Appl,2002,23(3):863-884. [8] YANG Y N,YANG Q Z.Further results for Perron-Frobenius Theorem for nonnegative tensors [J].SIAM J Matrix Anal Appl,2010,31(5):2517-2530. [9] LI C Q,WANG F,ZHAO J X,et al.Criterions for the positive definiteness of real supersymmetric tensors [J].J Comput Appl Math,2014,255(1):1-14. [10] KANNANA M R,MONDERERB N S,BERMANA A.Some properties of strong H-tensors and general H-tensos [J].Linear Algebra Appl,2015,476(6):42-55. [11] DING W Y,QI L Q,WEI Y M.M-tensors and nonsingular M-tensors [J].Linear Algebra Appl,2013,439(10):3264-3278. [12] WANG F,SUN D S.New criteria for H-tensors and an application [J].J Inequal Appl,2016,96:1-12. [13] WANG F,SUN D S,ZHAO J X,et al.New practical criteria for H-tensors and its application [J].Linear Multilinear Algebra,2017,65(2):269-283. [14] LI Y T,LIU Q L,QI L Q.Programmable criteria for strong H-tensors [J].Numer Algor,2017,74(1):199-211. [15] NI Q,QI L Q,WANG F.An eigenvalue method for the positive definiteness identification problem [J].IEEE Trans Automat Control,2008,53(3):1096-1107. [16] ZHANG L P,QI L Q,ZHOU G L.M-tensors and some applications [J].SIAM J Matrix Anal Appl,2014,35(2):437-542. [17] ZHANG K L,WANG Y J.An H-tensor based iterative scheme for identifying the positive definiteness of multivariate homogeneous forms [J].J Comput Appl Math,2016,305(1):1-10. [18] BOSE N K,MODARESS A R.General procedure for multivariable polynomial positivity with control applications [J].IEEE Trans Automat Control,1976,21(5):596-601. [19] CHEN H B,QI L Q.Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors [J].Journal of Industrial & Management Optimization,2015,11(4):1263-1274. [20] SONG Y S,QI L Q.Necessary and sufficient conditions for copositive tensors [J].Linear Multilinear Algebra,2015,63(1):120-131. [21] 孙德淑,吴 念,柏冬健,等.齐次多项式正定性的判定准则[J/OL].郑州大学学报(理学版).https://doi.org/10.13705/j.issn.1671-6841.2020281. [22] QI L Q,SONG Y S.An even order symmetric B-tensor is positive definite [J].Linear Algebra Appl,2014,457(1):303-312. [23] LI C Q,LI Y T.Double B-tensors and quasi-double B-tensors [J].Linear Algebra Appl,2015,466(1):343-356. |