兰州理工大学学报 ›› 2022, Vol. 48 ›› Issue (1): 78-84.

• 自动化技术与计算机技术 • 上一篇    下一篇

改进遗传算法及其在矿山生产调度中的应用

王志文*1,2,3, 巩旭鹏1, 孙洪涛4, 胡绩强1   

  1. 1.兰州理工大学 电气工程与信息工程学院, 甘肃 兰州 730050;
    2.兰州理工大学 甘肃省工业控制先进控制重点实验室, 甘肃 兰州 730050;
    3.兰州理工大学 电气与控制工程国家级实验教学示范中心, 甘肃 兰州 730050;
    4.曲阜师范大学 工学院, 山东 曲阜 273100
  • 收稿日期:2020-08-03 出版日期:2022-02-28 发布日期:2022-03-09
  • 通讯作者: 王志文(1976-),男,甘肃武威人,博士,教授,博导.Email:wzw@lut.edu.cn
  • 基金资助:
    国家自然科学基金(61863026,61563031),甘肃省高等学校产业支撑引导项目(2019C-05)

Improved genetic algorithm and its application in mine production scheduling

WANG Zhi-wen1,2,3, GONG Xu-peng1, SUN Hong-tao4, HU Ji-qiang1   

  1. 1. College of Electrical Engineering and Information Engineering, Lanzhou Univ. of Tech., Lanzhou 730050, China;
    2. Key Laboratory of Advanced Industrial Control of Gansu Province, Lanzhou 730050, China;
    3. National Experimental Teaching Center of Electrical and Control Engineering, Lanzhou Univ. of Tech., Lanzhou 730050, China;
    4. Technical College of Qufu Normal University, Qufu 273100, China
  • Received:2020-08-03 Online:2022-02-28 Published:2022-03-09

摘要: 基于多目标生产调度的特点和不足,从采掘运输成本和矿石品位两个角度出发,考虑矿石种类、铲位出矿量及卡车调度等因素,构建了多目标矿山生产调度模型.结合遗传算法解决多目标优化问题的优势,提出了基于改进遗传算法的矿山生产调度策略以及实现过程,并将改进前后遗传算法对模型的求解进行对比.模拟实验结果表明,运用改进遗传算法对矿山资源调度进行优化具有可行性,可促进开采业更好的发展.

关键词: 矿山生产调度, 多目标, 改进遗传算法

Abstract: Based on the characteristics and shortcomings of multi-objective production scheduling, this paper constructs a multi-objective mine production scheduling model from the perspectives of mining and transportation costs and ore grade, considering factors such as ore types, shovel output and truck scheduling. Combining the advantages of genetic algorithm in solving multi-objective optimization problems, a mine production scheduling strategy based on an improved genetic algorithm and its implementation process are proposed, and the genetic algorithm before and after the improvement is compared to the solution of the model. The simulation experiment results show that the improved genetic algorithm is used to dispatch mine resources optimization is feasible and can promote better development of the mining industry.

Key words: mine production scheduling, multi-objective, improved genetic algorithm

中图分类号: