兰州理工大学学报 ›› 2022, Vol. 48 ›› Issue (2): 61-66.

• 机械工程与动力工程 • 上一篇    下一篇

基于改进遗传算法的半挂牵引车平顺性与操稳性协同优化

赵向阳*, 吴启斌   

  1. 河南工学院 车辆与交通工程学院, 河南 新乡 453000
  • 收稿日期:2020-12-09 出版日期:2022-04-28 发布日期:2022-05-07
  • 通讯作者: 赵向阳(1981-),男,河南洛阳人,副教授.Email:zxy518168@126.com
  • 基金资助:
    河南省科技攻关项目(202102210066),河南省高等学校青年骨干教师资助项目(2018GGJS172)

Cooperative optimization of ride comfort and handling stability of semi-trailer tractor based on improved genetic algorithm

ZHAO Xiang-yang, WU Qi-bin   

  1. Department of Automobile Engineering, Henan Institute of Technology, Xinxiang 453000, China
  • Received:2020-12-09 Online:2022-04-28 Published:2022-05-07

摘要: 为实现平顺性和操纵稳定性的协同优化,以某半挂牵引车悬架系统为研究对象,以脉冲输入下座椅坐垫上方z向最大加速度、角阶跃输入下的横摆角速度振幅为目标,选取前后悬架钢板弹簧刚度、前后悬架减振器鞍座刚度以及阻尼系数为设计变量,建立目标函数并利用改进NSGA-Ⅱ遗传算法对设计变量进行寻优匹配,最后将最优参数导入ADAMS/CAR软件预先建立的整车仿真模型进行仿真实验分析,深化遗传算法在半悬挂牵引车多目标优化中的应用.结果表明,优化后的平顺性和操纵稳定性得到了有效改善,并且为研究车辆的平顺性和操作稳定性提供一种有效的匹配办法.

关键词: 操纵稳定性, 遗传算法, 多目标优化, 平顺性

Abstract: In order to realize the cooperative optimization of ride comfort and handling stability, the suspension system of a tractor semitrailer is taken as the research object. The maximum acceleration in z direction above the seat cushion under pulse input and the amplitude of yaw rate under angle step input are taken as the objectives. The leaf spring stiffness of front or rear suspension, the saddle stiffness of front or rear suspension and the damping coefficient are selected as the design variables. what’s more,based on objective function, the improved NSGA -Ⅱ genetic algorithm is used to optimize and match the design variables. Finally, the optimal parameters are imported into the pre established vehicle simulation model of ADAMS/CAR software for simulation test analysis, which deepens the application of genetic algorithm in the multi-objective optimization of semi suspension tractor. The results show that the ride comfort and handling stability after optimization are improved effectively. The research also provides an effective matching method for studying the ride comfort and handling stability of vehicles.

Key words: handling stability, genetic algorithm, multiobjective optimization, ride comfort

中图分类号: