兰州理工大学学报 ›› 2022, Vol. 48 ›› Issue (3): 42-49.

• 机械工程与动力工程 • 上一篇    下一篇

改进的D-t-SNE滚动轴承故障数据集降维方法

赵荣珍*, 薛勇, 吴耀春   

  1. 兰州理工大学 机电工程学院, 甘肃 兰州 730050
  • 收稿日期:2021-03-09 出版日期:2022-06-28 发布日期:2022-10-09
  • 通讯作者: 赵荣珍(1960-),女,山东枣庄人,博士,教授,博导.Email:zhaorongzhen@lut.edu.cn
  • 基金资助:
    国家自然科学基金(51675253)

Rolling bearing fault data set dimension reduction method of improved D-t-SNE

ZHAO Rong-zhen, XUE Yong, WU Yao-chun   

  1. School of Mechanical and Electrical Engineering, Lanzhou Univ. of Tech., Lanzhou 730050, China
  • Received:2021-03-09 Online:2022-06-28 Published:2022-10-09

摘要: 针对传统降维方法难以保持数据集的局部与全局几何结构特征问题,选择测地距离作为度量指标,提出改进t-SNE的故障数据集降维方法D-t-SNE.首先提取消噪振动信号的多域高维故障数据集,在对其进行归一化处理之后,利用GD指标改进后的D-t-SNE算法对高维故障数据集进行降维运算,去除冗余信息,然后通过不同的分类器对低维特征子集进行故障模式辨识.以UCI数据集和双跨转子实验台的模拟故障数据集为实验对象对D-t-SNE算法进行验证,并与SNE和t-SNE算法的各项实现结果进行对比.结果表明,D-t-SNE算法具有通过降低高维故障数据集的维数从而达到降低故障分类难度、提高故障辨识准确率的性能,可为降低旋转机械原始故障特征数据集的规模、降低故障分类的难度与提高故障辨识结果的可视化效果提供理论参考依据.

关键词: t-分布随机近邻嵌入, 滚动轴承, 数据降维, 故障诊断, 测地距离

Abstract: Aiming at the problem that the traditional dimensionality reduction method is difficult to maintain the local and global geometric structure characteristics of the datasets, geodesic distance is selected as the measurement index, and an improved t-SNE fault data set dimensionality reduction method is proposed. In this algorithm, firstly, the multi-domain high-dimensional fault data set of denoising vibration signal is extracted and normalized, then D-t-SNE algorithm improved by GD index is used to reduce the dimension of high-dimensional fault data set, remove the redundant information, and then identify the fault modes of the low-dimensional feature subsets through different classifiers. Taking UCI data set and the simulated fault data set of the double-span rotor test bench as experimental objects, the above methods are verified and compared with the implementation results with SNE and t-SNE. The results show that this method can reduce the dimensionality of high-dimensional fault data set, thus it can reduce the difficulty of fault classification and improve the performance of fault identification accuracy. This study can provide a theoretical reference for reducing the scale of the original fault feature data set of rotating machinery, reducing the difficulty of fault classification as well as improving the visualization of fault identification results.

Key words: t-distributed stochastic neighbor embedding, rolling bearing, data dimension reduction, fault diagnosis, geodesic distance

中图分类号: