[1] TAN H,WU Y,SHEN B,et al.Short-term traffic prediction based on dynamic tensor completion [J].IEEE Transactions on Intelligent Transportation Systems,2016,17(8):2123-2133. [2] VLAHOGIANNI E L,KARLAFTIS M G,GOLIAS J C.Short-term traffic forecasting: where we are and where we’re going [J].Transportation Research Part C,2014,43:3-19. [3] ZHANG H,WANG X,CAO J,et al.A hybrid short-term traffic flow forecasting model based on time series multifractal characteristics [J].Applied Intelligence,2018,48(8):2429-2440. [4] YOUNES M B,BOUKERCHE A.A performance evaluation of an efficient traffic congestion detection protocol (ecode) for intelligent transportation systems [J].AdHoc Netw,2015,24 (2):317-336. [5] 黄益绍,韩 磊.基于改进极限学习机的公交站点短时客流预测方法 [J].交通运输系统工程与信息,2019,19(4):115-123. [6] 傅蔚阳,刘以安,薛 松.基于灰狼算法与小波神经网络的目标威胁评估 [J].浙江大学学报(工学版),2018,52(4):680-686. [7] 张文胜,郝孜奇,朱冀军,等.基于改进灰狼算法优化BP神经网络的短时交通流预测模型 [J].交通运输系统工程与信息,2020,20(2):196-203. [8] 罗文慧,董宝田,王泽胜.基于 CNN-SVR 混合深度学习模型的短时交通流预测 [J].交通运输系统工程与信息,2017,17(5):68-74. [9] CHEN X,CAI X,LIANG J,et al.Ensemble learning multiple LSSVR with improved harmony search algorithm for short-term traffic flow forecasting [J].IEEE Access,2018,6:1-10. [10] AIT-EI-FQUIH B,HOTEIT I.Fast Kalman-like filtering for large-dimensional linear and Gaussian state-space models [J].IEEE Transactions on Signal Processing,2015,63(21):5853-5867. [11] CHEN D W.Research on traffic flow prediction in the big data environment based on the improved RBF neural network [J].IEEE Transactions on Industrial Informatics,2017,13:2000-2008. [12] WEI D F.Network traffic prediction based on RBF neural network optimized by improved gravitation search algorithm [J].Neural Computing and Applications,2017,28:2303-2312. [13] WANG P,WU C,GAO X.Research on subway passenger flow combination prediction model based on RBF neural networks and LSSVM [C]//2016 Chinese Control and Decision Conference (CCDC).[S.l.]:IEEE,2016:6064-6069. [14] 陈明猜,於东军,戚 湧.基于FOA-RBF网络的城市道路短时交通流预测 [J].南京邮电大学学报(自然科学版),2018,38(2):103-110. [15] TILAHUN S L,NGNOTCHOUYE J M T.Firefly algorithm for discrete optimization problems:a survey [J].Ksce Journal of Civil Engineering,2017,21(2):535-545. [16] WANG B,LI D X,JIANG J P,et al.A modified firefly algorithm based on light intensity difference [J].Journal of Combinatorial Optimization,2016,31(3):1045-1060. [17] 宋志强,耿 聃,苏晨辉,等.基于改进萤火虫算法优化BP神经网络的水电站厂房振动预测 [J].振动与冲击,2017,36(24):64-69. [18] 柳长源,任宇艳,毕晓君.基于改进萤火虫算法的区域交通信号配时优化 [J].控制与决策,2020(12):16-21. [19] 田东平,田絮资.基于混沌映射的PSO及其在图像分割中的应用 [J].西北大学学报(自然科学版),2012,42(6):925-930. [20] 张秋余,朱学明.基于GA-Elman神经网络的交通流短时预测方法 [J].兰州理工大学学报,2013,39(3):94-98. [21] HOU Y,EDARA P,SUN C.Traffic flow forecasting for urban work zones [J].IEEE Transactions on Intelligent Transportation Systems,2015,16(4):1761-1770. [22] ZHU J Z,CAO J X,ZHU Y.Traffic volume forecasting based on radial basis function neural network with the consideration of traffic flows at the adjacent intersections [J].Transportation Research Part C:Emerging Technologies,2014,47(2): 139-154. [23] 龙 文,蔡绍洪,焦建军,等.求解约束优化问题的萤火虫算法及其工程应用 [J].中南大学学报(自然科学版),2015,46(4):1260-1266. [24] OLATOMIWA L,KEKHILEF S,SHAMSHIRBAND S,et al.A support vector machine-firefly algorithm-based model for global solar radiation prediction [J].Solar Energy,2015,115(5):632-644. [25] LIU J,WU N Q,QIAO Y,et al.Short-term traffic flow forecasting using ensemble approach based on deep belief networks [J].IEEE Transactions on Intelligent Transportation Systems,2020,654(99):1-14. |