兰州理工大学学报 ›› 2020, Vol. 46 ›› Issue (2): 86-91.

• 自动化技术与计算机技术 • 上一篇    下一篇

基于改进NPE算法的间歇过程故障检测

赵小强1,2,3, 张和慧1   

  1. 1.兰州理工大学 电气工程与信息工程学院, 甘肃 兰州 730050;
    2.兰州理工大学 甘肃省工业过程先进控制重点实验室, 甘肃 兰州 730050;
    3.兰州理工大学 国家级电气与控制工程实验教学中心, 甘肃 兰州 730050
  • 收稿日期:2018-11-19 出版日期:2020-04-28 发布日期:2020-06-23
  • 作者简介:赵小强(1969-),男,陕西岐山人,博士,教授,博导.
  • 基金资助:
    国家自然科学基金(61763029,61873116),国防基础科研项目(JCKY2018427C002),甘肃省高等学校产业支撑引导项目(2019C-05),甘肃省工业过程先进控制重点实验室开放基金(2019KFJJ01)

Fault detection of batch process based on improved NPE algorithm

ZHAO Xiao-qiang1,2,3, ZHANG He-hui1   

  1. 1. College of Electrical and Information Engineering, Lanzhou Univ. of Tech. , Lanzhou 730050, China;
    2. Key Laboratory of Gansu Advanced Control for Industrial Processes, Lanzhou Univ. of Tech. , Lanzhou 730050, China;
    3. National Experimental Teaching Center of Electrical and Control Engineering, Lanzhou Univ. of Tech. , Lanzhou 730050, China
  • Received:2018-11-19 Online:2020-04-28 Published:2020-06-23

摘要: 由于间歇过程具有多模态和数据高斯与非高斯混合的特征,往往会造成故障检测准确率不高,影响监控性能,因此提出一种改进的NPE算法.该算法首先通过寻找每一个样本的局部k近邻集,对局部近邻求均值与标准差进行标准化,生成单一模态并使标准化后的数据近似服从多元高斯分布;然后结合邻域保持嵌入算法(neighborhood preserving embedding,NPE)对新的数据进行降维,对数据样本近邻间的局部信息与样本信息充分挖掘,提取数据的局部结构信息;最后利用支持向量数据描述(support vector data description,SVDD)构建监控统计量Ω与控制限进行故障检测,从而实现比标准统计量SPE检测更快更好的效果.通过在青霉素发酵仿真实验平台进行测试,与NPE的SPE、Ω的统计量进行两类故障的对比,验证了本文提出的LNSNPE-SVDD算法的有效性.

关键词: 间歇过程, 过程监控, 局部近邻标准化, 多模态

Abstract: Because batch process has the feature of multi-modality and data Gaussian and non-Gaussian mixing, so that the accuracy of fault detection often is not high and the monitoring performance is affected. Therefore, an improved NPE algorithm is proposed in this paper. Firstly, in this algorithm, the local k-nearest neighbor set of each sample is found, the local neighbors are normalised by seeking their mean and standard deviation, and, therefore, a single mode is generated and the normalized data is made to obey approximately the multivariate Gaussian distribution. Then, neighborhood preserving embedding (NPE) algorithm is corporated to perform dimensional reduction for new data, the local information between the neighbors of data sample and sample information are fully exploited, and the local structural information of data is extracted. Finally, support vector data description (SVDD) is used to construct monitoring statistics Ω and control limits for fault detection, so that a faster and better result than standard statistic SPE detection is realized. By means of test on penicillin fers montation simulation plat form and compared with the two types of faults of the SPE and Ω statistics of NPE, the effectiveness of the proposed LNSNPE-SVDD algorithm is verified.

Key words: batch process, local neighbor normalization, process monitoring, multimode

中图分类号: