兰州理工大学学报 ›› 2023, Vol. 49 ›› Issue (4): 35-41.

• 机械工程与动力工程 • 上一篇    下一篇

基于GSRDPGE算法的转子故障数据集降维方法研究

周宏飞, 赵荣珍*   

  1. 兰州理工大学 机电工程学院, 甘肃 兰州 730050
  • 收稿日期:2021-12-25 出版日期:2023-08-28 发布日期:2023-08-29
  • 通讯作者: 赵荣珍(1960-),女,山东枣庄人,博士,教授,博导. Email:zhaorongzhen@lut.edu.cn
  • 基金资助:
    国家自然科学基金(51675253)

Research on rotor fault feature extraction method based on GSRDPGE algorithm

ZHOU Hong-fei, ZHAO Rong-zhen   

  1. School of Mechanical and Electronic Engineering, Lanzhou Univ. of Tech., Lanzhou 730050, China
  • Received:2021-12-25 Online:2023-08-28 Published:2023-08-29

摘要: 针对旋转机械故障数据集因高维和信息冗余而导致故障分类困难的问题,提出有效降低数据维数的组稀疏残差判别保持图嵌入算法.首先,该算法改进了类间稀疏编码的方式,得到了更具判别性的类间稀疏权重矩阵;然后,通过加权的方式清除特征集中离群点对稀疏编码的影响;最后,以类内重构散度最小、类间重构散度最大为目标计算最优判别投影矩阵.通过Iris仿真数据集和双跨转子系统的故障数据集对所提算法进行验证,并与其他几种典型降维算法对比,证明该算法能够同时兼顾数据分布状态的全局性和局部性,使故障类别之间差异性更突出,并能够提高故障模式识别准确率.研究表明,该算法可为转子故障智能诊断提供参考依据.

关键词: 旋转机械, 稀疏编码, 稀疏残差, 属性约简

Abstract: Aiming at the difficulty of fault classification caused by high dimension and information redundancy of rotating machinery fault data set, the Group Sparsity Discriminant Preserving Graph Embedding (GSRDPGE) algorithm is proposed to reduce data dimension effectively. First, the algorithm improved the inter-class sparse coding and obtained a more discriminant inter-class sparse weight matrix. Then, the influence of outliers in feature sets on sparse coding was removed by the weighting method. Finally, the optimal discriminant projection matrix was calculated with the objective of minimizing the intra-class reconstruction divergence and maximizing the inter-class reconstruction divergence. The proposed method was validated with an Iris simulation data set and double span rotor system fault data set, and compared with several other typical dimension reduction methods. The results show that this method can simultaneously take into account the global and local aspects of the data distribution status, make the differences between fault categories more prominent, and improve the accuracy of fault pattern recognition. The results show that this method can provide a reference for intelligent rotor fault diagnosis.

Key words: rotating machinery, sparse coding, sparse residual, attribute reduction

中图分类号: