兰州理工大学学报 ›› 2023, Vol. 49 ›› Issue (5): 50-58.

• 机械工程与动力工程 • 上一篇    下一篇

基于Seq2Seq深度学习模型的焦炉煤气发生量预测方法研究

王文婷, 刘姝君, 张耀聪, 杜小泽*, 许潼   

  1. 兰州理工大学 能源与动力工程学院, 甘肃 兰州 730050
  • 收稿日期:2022-03-03 出版日期:2023-10-28 发布日期:2023-11-07
  • 通讯作者: 杜小泽(1970-),男,河北安国人,博士,教授.Email:xz.du@163.com
  • 基金资助:
    甘肃省青年科技基金(21JR7RA262),国网综合能源服务集团有限公司(52789921001R)

Prediction of coke oven gas generation based on Seq2Seq

WANG Wen-ting, LIU Shu-jun, ZHANG Yao-cong, DU Xiao-ze, XU Tong   

  1. School of Energy and Power Engineering, Lanzhou Univ.of Tech., Lanzhou 730050, China
  • Received:2022-03-03 Online:2023-10-28 Published:2023-11-07

摘要: 为实现钢铁生产过程中副产煤气的精准预测,构建了基于序列到序列的深度学习模型.通过编码器计算输入序列的隐状态得到隐状态矩阵,并通过解码器对其进行解码得到预测结果.根据灰色关联度分析关联度较高的输入参数,针对钢铁生产中煤气产量不稳定波动的特点,利用箱线图和hampel滤波对原始数据的极端异常点和突变点进行处理,对输入模型分别进行单步和多步预测.结果表明:单步预测时基于Seq2Seq结构的模型较单一模型预测性能有所提高,其中LSTM2GRU模型对峰谷值拟合表现最优;多步预测时LSTM2GRU模型可有效降低模型性能下降趋势,通过在2个数据集与LSTM2LSTM模型和GRU2GRU模型对比发现,LSTM2GRU模型均方根误差分别下降了5.3%、5.6%和9%、7.7%,平均绝对误差分别下降了7.3%、7%和9.7%、7.8%.因此,LSTM2GRU模型相比其他模型更适合长尺度时间序列的预测,在模型中引入GRU结构提高了预测精度,缩短了预测耗时.

关键词: 煤气预测, 神经网络, 深度学习, Seq2Seq模型, 灰色关联度

Abstract: To achieve accurate prediction of by-product gas in the steel production process, a sequence-to-sequence based deep learning model is constructed here. The hidden state matrix is obtained by calculating the hidden state of the input sequence through the encoder, and then the prediction result is obtained by decoding it through the decoder. Input parameters with high correlation are analyzed according to grey correlation. For the characteristics of unstable fluctuations in steel production, box line plots and hampel filtering are used to process extreme outliers and abrupt changes in the raw data, which are input to the model for single and multi-step prediction respectively. The results show that the prediction performance of the models based on the Seq2Seq structure is improved compared to their corresponding single models for single-step prediction, in which the LSTM2GRU model performs best for peak and valley fits. The LSTM2GRU model can effectively reduce the declining trend of model performance in multi-step prediction. Compared with the LSTM2LSTM model and the GRU2GRU model on two data sets, it is found that the root mean square error of the LSTM2GRU model has decreased by 5.3%, 5.6% and 9%, 7.7%, respectively. The mean absolute error of the LSTM2GRU decreased by 7.3%, 7% and 9.7%, 7.8%, respectively. Therefore, the LSTM2GRU model is more suitable for forecasting long-scale time series compared to other models. In addition, the introduction of the GRU structure into the model has improved prediction accuracy and reduced prediction time.

Key words: gas prediction, neural network, deep learning, Seq2Seq, grey relational analysis

中图分类号: