兰州理工大学学报 ›› 2023, Vol. 49 ›› Issue (5): 86-92.

• 自动化技术与计算机技术 • 上一篇    下一篇

利用指数损失因子提高长短期记忆网络轨迹预测精度的方法

张彤1, 王志文*1,2,3, 卢延荣1, 孙洪涛4   

  1. 1.兰州理工大学 电气工程与信息工程学院, 甘肃 兰州 730050;
    2.兰州理工大学 甘肃省工业过程先进控制重点实验室, 甘肃 兰州 730050;
    3.兰州理工大学 电气与控制工程国家级实验教学示范中心, 甘肃 兰州 730050;
    4.曲阜师范大学 工学院, 山东 曲阜 273100
  • 收稿日期:2021-12-13 出版日期:2023-10-28 发布日期:2023-11-07
  • 通讯作者: 王志文(1976-),男,甘肃武威人,博士,教授,博导. Email:wzw@lut.edu.cn
  • 基金资助:
    国家自然科学基金(61863026),甘肃省高等学校产业支撑引导项目(2019C-05),甘肃省工业过程先进控制重点实验室开放基金(2019KFJJ03),甘肃省重大专项(21ZD4GA028)

Improve the LSTM trajectory prediction accuracy through an exponential weighted loss function

ZHANG Tong1, WANG Zhi-wen1,2,3, LU Yan-rong1, SUN Hong-tao4   

  1. 1. College of Electrical and Information Engineering,Lanzhou Univ. of Tech., Lanzhou 730050, China;
    2. Key Laboratory of Gansu Advanced Control for Industrial Processes,Lanzhou Univ. of Tech., Lanzhou 730050, China;
    3. National Demonstration Center for Experimental Electrical and Control Engineering Education, Lanzhou Univ. of Tech., Lanzhou 730050, China;
    4. College of Engineering, Qufu Normal University, Qufu 273100, China
  • Received:2021-12-13 Online:2023-10-28 Published:2023-11-07

摘要: 长短期记忆(LSTM)网络在车辆轨迹预测任务中取得了一定的成效.然而,LSTM网络预测时会引入累积误差,导致轨迹预测的精度随预测时间逐渐降低.如何减小LSTM网络在轨迹预测过程中的累积误差是一个关键性问题.为解决此问题,使用随预测时间增长的指数函数对平滑的L1损失函数进行加权来降低累积误差,使模型能更加准确地预测出车辆的未来轨迹.为验证此方法的有效性,以长短期记忆网络编码器解码器模型为基础,在美国交通部下一代仿真计划(NGSIM)采集的US-101和I-80数据集上进行验证.结果表明,与近年来的深度学习方法相比,本文提出的轨迹预测方法0.2 s时刻平均误差从0.332 0 m降低到0.103 2 m,且5 s时刻平均误差由原来的7.716 8 m降为6.624 3 m,总体上比原来降低了14.16%,有效减小了累积误差.

关键词: 自动驾驶, 轨迹预测, LSTM, 编码器-解码模型, 指数加权的损失函数

Abstract: Although a long-short-term memory (LSTM) network has been widely adopted to predict the vehicle trajectory, the iterative nature of LSTM introduces accumulative errors during training, resulting in a gradual decrease in the accuracy of trajectory prediction over time. Therefore, how to reduce the accumulative errors of the LSTM is a critical issue. To solve this problem, an exponential weighted loss function is used in this paper to weight the smoothed L1 loss function to reduce the cumulative error, enabling the model to predict the future trajectory of the vehicle more accurately, which is validated on US-101 and I-80 datasets from Next Generation Simulation (NGSIM). The simulation results show that the test dataset’s average error at 0.2 s and 5 s is reduced from 0.332 0 m and 7.716 8 m to 0.103 2 m and 6.624 3 m, respectively. The average prediction error is reduced by 14.16%, significantly reducing the cumulative error.

Key words: autonomous driving, trajectory prediction, LSTM, an encoder-decoder model, an exponential loss function

中图分类号: