[1] HERO A O,COCHRAN D.Sensor management:past,present,and future[J].IEEE Sensors Journal,2011,11(12):3064-3075. [2] 陈 辉,邓东明,韩崇昭.基于区间箱粒子多伯努利滤波器的传感器控制策略[J].自动化学报,2021,47(6):1428-1443. [3] HASHEMI A,GHASEMI M,VIKALO H,et al.A randomized greedy algorithm for near-optimal sensor scheduling in large-scale sensor networks[C]//2018 Annual American Control Conference (ACC).Wisconsin:IEEE,2018:1027-1032. [4] LIU F,JIANG C,XIAO W.Multistep prediction-based adaptive dynamic programming sensor scheduling approach for collaborative target tracking in energy harvesting wireless sensor networks[J].IEEE Transactions on Automation Science and Engineering,2020,18(2):693-704. [5] PANG C,SHAN G.Sensor scheduling based on risk for target tracking[J].IEEE Sensors Journal,2019,19(18):8224-8232. [6] PINTO S C,ANDERSSON S B,HENDRICKX J M,et al.Optimal minimax mobile sensor scheduling over a network[C]//2021 American Control Conference (ACC).New Orleans:IEEE,2021:1180-1185. [7] ZHANG C,HWANG I.Decentralized multi-sensor schedulingformulti-targettrackingandidentitymanagement[C]//2019 18th European Control Conference (ECC).Piscataway:IEEE,2019:1804-1809. [8] KAELBLING L P,LITTMAN M L,MOORE A W.Reinforcement learning:a survey[J].Journal of Artificial Intelligence Research,1996,4:237-285. [9] FRANCOIS-LAVET V,HENDERSON P,ISIAM R,et al.An introduction to deep reinforcement learning[J].Foundations and Trends in Machine Learning,2018,11(3/4):219-354. [10] CAMPBELL R H,CZECHOWSKI K,ERHAN D,et al.Model based reinforcement learning for Atari[C]//Proceedings of the International Conference on Learning Representations.New Orleans:[s.n.],2019:6-9. [11] KUMAR A,ZHOU A,TUCKER G,et al.Conservative Q-learning for offline reinforcement learning[J].Advances in Neural Information Processing Systems,2020,33:1179-1191. [12] RECHT B.A tour of reinforcement learning:the view from continuous control[J].Annual Review of Control,Robotics,and Autonomous Systems,2019,2:253-279. [13] LEONG A S,RAMASWAMY A,QUEVEDO D E,et al.Deep reinforcement learning for wireless sensor scheduling in cyber-physical systems[J].Automatica,2020,113:108759. [14] YANG L,RAO H,LIN M,et al.Optimal sensor scheduling for remote state estimation with limited bandwidth:a deep reinforcement learning approach[J].Information Sciences,2022,588:279-292. [15] YANG J,YOU X,WU G,et al.Application of reinforcement learning in UAV cluster task scheduling[J].Future Generation Computer Systems,2019,95:140-148. [16] ZHAO D,WANG H,SHAO K,et al.Deep reinforcement learning with experience replay based on SARSA[C]//2016 IEEE Symposium Series on Computational Intelligence (SSCI).Athens:IEEE,2016:1-6. [17] ALFAKIH T,HASSAN M M,GUMAEI A,et al.Task offloading and resource allocation for mobile edge computing by deep reinforcement learning based on SARSA[J].IEEE Access,2020,8:54074-54084. [18] ASGHARI A,SOHRABI M K,YAGHMAEE F.Task scheduling,resource provisioning,and load balancing on scientific workflows using parallel SARSA reinforcement learning agents and genetic algorithm[J].The Journal of Supercomputing,2021,77(3):2800-2828. [19] LAI X,YI W,CUI Y,et al.Capacity estimation of lithium-ion cells by combining model-based and data-driven methods based on a sequential extended Kalman filter[J].Energy,2021,216:119233. [20] 孙照强,王志贵,孟 飞,等.基于EKF及弹道方程的弹道目标跟踪滤波器设计[J].系统工程与电子技术,2022,44(10):3207-3212. [21] 陈 辉,刘雅婷,张双庆,等.多扩展目标跟踪中基于加权最优子模式分配距离的传感器管理方法[J].控制理论与应用,2022,39(5):887-896. |