兰州理工大学学报 ›› 2024, Vol. 50 ›› Issue (6): 92-98.

• 自动化技术与计算机技术 • 上一篇    下一篇

基于智能优化决策的目标跟踪传感器路径规划

张文旭1, 王晓晴1, 陈辉*1, 赵永红2   

  1. 1.兰州理工大学 电气工程与信息工程学院, 甘肃 兰州 730050;
    2.甘肃长风电子科技有限责任公司, 甘肃 兰州 730070
  • 收稿日期:2022-06-29 出版日期:2024-12-28 发布日期:2025-01-13
  • 通讯作者: 陈 辉(1978-),男,山西闻喜人,博士,教授,博导.Email:huich78@hotmail.com
  • 基金资助:
    国家国防基础科研项目(JCKY2018427C002),国家自然科学基金(62366031,61873116,51668039,61763029),甘肃省教育厅产业支撑计划(2021CYZC-02)

Path planning of target tracking sensor based on intelligent optimization decision

ZHANG Wen-xu1, WANG Xiao-qing1, CHEN Hui1, ZHAO Yong-hong2   

  1. 1. College of Electrical and Information Engineering, Lanzhou Univ. of Tech., Lanzhou 730050, China;
    2. Gansu Province Changfeng Electronic Technology Co. Ltd., Lanzhou 730070, China
  • Received:2022-06-29 Online:2024-12-28 Published:2025-01-13

摘要: 针对目标跟踪系统基于传感器管理的估计优化问题,提出一种在离散空间基于强化学习的传感器路径规划方法.首先,通过非线性最优滤波获得目标下一时刻的估计位置与协方差.然后,建立了基于强化学习的目标跟踪优化模型,基于SARSA算法计算传感器路径规划后的目标协方差的迹.最后,对下一时刻的传感器位置选择进行单步循环,根据每次循环中传感器路径规划前后协方差的迹的对比,获得传感器的最优移动位置.在仿真试验中对比分析了传感器在不同学习幕数中的运动轨迹,结果显示目标跟踪优化的效果得到明显提升.

关键词: 目标跟踪, 强化学习, SARSA, 传感器路径规划

Abstract: Aiming at the estimation and optimization problem of target tracking systems managed by sensor control, this paper proposes a sensor path planning method based on reinforcement learning in the discrete space. First, the estimated position and the covariance of the target at the next time are obtained by nonlinear optimal filtering. Then, a target tracking optimization model based on reinforcement learning is established, and the target covariance trace after sensor path planning is calculated based on the SARSA (state-action-reward-state-action) algorithm. Finally, a single-step cycle is performed on the sensor position selection the next time. The optimal moving position is obtained by comparison of the covariance traces before and after the sensor path planning in each cycle. In the simulation experiment, the motion trajectories of the sensor in different learning episodes were compared and analyzed, and the results show that the effect of target tracking optimization was significantly improved.

Key words: target tracking, reinforcement learning, SARSA, sensor path planning

中图分类号: