兰州理工大学学报 ›› 2020, Vol. 46 ›› Issue (3): 100-104.

• 自动化技术与计算机技术 • 上一篇    下一篇

基于改进的高斯混合模型牙齿图像分割研究

包广斌1, 杨旭鹏1, 康宏2   

  1. 1.兰州理工大学 计算机与通信学院, 甘肃 兰州 730050;
    2.兰州大学 口腔医院, 甘肃 兰州 730000
  • 收稿日期:2019-05-04 出版日期:2020-06-28 发布日期:2020-08-19
  • 作者简介:包广斌(1975-),男,甘肃兰州人,博士,副教授.
  • 基金资助:
    甘肃省自然科学基金(18JR3RA156),兰州市科技计划项目(2017-4-105)

Tooth image segmentation research based on improved Gaussian mixture model

BAO Guang-bin1, YANG Xu-peng1, KANG Hong2   

  1. 1. School of Computer and Communication, Lanzhou Univ. of Tech., Lanzhou 730050, China;
    2. School of Stomatology, Lanzhou University, Lanzhou 730000, China
  • Received:2019-05-04 Online:2020-06-28 Published:2020-08-19

摘要: 针对边界模糊和对比度低的口腔CT图像中牙齿目标区域提取难的问题,提出了一种基于高斯混合模型与K-均值的改进聚类分割算法.该算法首先通过各向异性滤波对图像预处理,实现去噪平滑的同时增强图像的细节;然后利用K-均值完成初始划分,并根据分类后的像素值给出EM算法迭代的初始值,加快算法迭代到最优解,从而大大降低算法迭代次数,有效解决EM算法求解参数时随机选取初值点易导致GMM陷入局部最优解的问题,进而使分割区域完整;最后利用EM算法学习GMM,完成ML分割.实验结果表明:改进方法降低了计算复杂度,对噪声具有较强的鲁棒性,可获得更为理想的分割结果.

关键词: 口腔CT图像, 各向异性滤波, K均值聚类, 高斯混合模型, 鲁棒性

Abstract: An improved clustering segmentation algorithm based on Gaussian mixture model and K-means is proposed in this paper to fix the problem of difficult to extract tooth target region in oral CT images with blurred boundary and low contrast. First of all, the image is preprocessed by anisotropic filtering to achieve de-noising and smoothing while enhancing details of the image. Secondly, K-means is used to complete a kind of initial division, and initial values of EM algorithm iteration is then given according to the pixel value after classification, so as to speed up the algorithm iteration to an optimal solution. This greatly reduces the number of algorithm iterations and effectively fixes the problem of GMM caused by randomly selecting the initial value points when EM algorithm solves parameters. Finally, we use EM algorithm to learn GMM and complete ML segmentation. Our experimental results indicate that the improved method reduces the computational complexity, has strong robustness to noise, and can obtain more ideal segmentation results.

Key words: oral CT image, anisotropic filtering, K-means algorithm, Gaussian mixture model, robustness

中图分类号: