兰州理工大学学报 ›› 2025, Vol. 51 ›› Issue (3): 167-172.

• 数理科学 • 上一篇    

非负矩阵的核单调刻画

林麟1, 钟金*2   

  1. 1.南昌交通学院 基础学科部, 江西 南昌 330100;
    2.江西理工大学 理学院, 江西 赣州 341000
  • 收稿日期:2023-05-10 出版日期:2025-06-28 发布日期:2025-06-30
  • 作者简介:钟 金(1984-),男,江西赣州人,博士,副教授.Email:zhongjin1984@126.com
  • 基金资助:
    国家自然科学基金(12261043)

Core-monotonicity characterizations for nonnegative matrices

LIN Lin1, ZHONG Jin2   

  1. 1. Department of Basic Courses, Nanchang Jiaotong Institute, Nanchang 330100, China;
    2. Faculty of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Received:2023-05-10 Online:2025-06-28 Published:2025-06-30

摘要: 研究了非负矩阵核单调的刻画问题.利用非负满秩分解给出了非负矩阵是核单调的充分必要条件,并给出了核逆非负时的表示.通过数值例子说明了非负矩阵的核逆与Moore-Penrose逆和群逆的非负性不是等价的,并利用矩阵的Moore-Penrose逆和群逆给出了非负矩阵是核单调的一个充分必要条件.此外,给出了一个实矩阵是核单调的充分必要条件,推广了Collatz的结果.

关键词: 非负矩阵, 核逆, 核单调, 对偶核单调

Abstract: Characterizations for the core-monotonicity of nonnegative matrices are studied. A sufficient and necessary condition for core-monotonicity of nonnegative matrices is presented by nonnegative full-rank decomposition, and the representation of the core inverse is also given when it is nonnegative. It is shown by some numerical examples that the nonnegativity of the core inverse and the Moore-Penrose is not equivalent to the group inverse of nonnegative matrices. Furthermore, a sufficient and necessary condition for the core-monotonicity of nonnegative matrices is given by using the Moore-Penrose inverse and group inverse. Additionally, a sufficient and necessary condition for the core-monotonicity of real matrices is presented, which extends the results of Collatz.

Key words: nonnegative matrix, core inverse, core-monotonicity, dual core-monotonicity

中图分类号: