兰州理工大学学报 ›› 2025, Vol. 51 ›› Issue (4): 33-42.

• 机械工程与动力工程 • 上一篇    下一篇

融合多头自注意力机制的故障命名实体识别

王江1, 剡昌锋*1, 卢家伟1, 王瑞民1, 张永明2   

  1. 1.兰州理工大学机电工程学院, 甘肃 兰州 730050;
    2.安徽容知日新科技股份有限公司, 安徽 合肥 230031
  • 收稿日期:2023-03-14 出版日期:2025-08-28 发布日期:2025-09-05
  • 通讯作者: 剡昌锋(1974-),男,甘肃平凉人,博士,研究员,博导.Email:changf_yan@163.com
  • 基金资助:
    国家自然科学基金(51165018),甘肃省优秀研究生“创新之星”项目(2022CXZX-407)

Fault named entity recognition based on multi-headed self-attention mechanism

WANG Jiang1, YAN Chang-feng1, LU Jia-wei1, WANG Rui-min1, ZHANG Yong-ming2   

  1. 1. School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China;
    2. Anhui Ronds Science and Technology Incorporated Company, Hefei 230031, China
  • Received:2023-03-14 Online:2025-08-28 Published:2025-09-05

摘要: 在汽轮发电机组故障诊断知识图谱构建过程中,缺乏公开的命名实体标注语料数据集,案例集中的数据呈现多源异构,专业词汇的关联权重特征提取困难.对此,根据汽轮发电机组故障案例公开资料,构建了汽轮发电机组故障诊断命名实体识别标注语料数据集,提出了融合多头自注意力机制与BERT-BiLSTM-CRF融合的命名实体识别方法.结果表明,该方法能够有效识别专业领域故障实体类别,明显优于其他传统命名实体识别方法,可为汽轮发电机组故障诊断知识图谱和智能辅助决策系统的构建提供保障.

关键词: 汽轮发电机组, 故障诊断, 命名实体识别, 多头自注意力机制, 知识图谱

Abstract: In the process of building a knowledge graph of fault diagnosis for turbine generator set, there are some problems, such as a lack of the open named entity annotated corpus datasets, the multiple source heterogeneity of the data in the casebook, and the difficulty of extracting association weight features for specialized vocabulary. This study constructs a named entity recognition annotated corpus dataset for turbine generator set fault diagnosis based on publicly available information of turbine generator set fault cases. Additionally, a named entity recognition method that integrates multi-headed self-attention and BERT-BiLSTM-CRF is proposed. The experimental results show that the proposed method can effectively identify fault entity categories in specialized fields, which is significantly better than other traditional named entity recognition methods. Therefore, it provides a guarantee for the establishment of a fault diagnosis knowledge graph and an intelligent auxiliary decision system for the turbine generator set.

Key words: turbine generator set, fault diagnosis, named entity recognition, multi-headed self-attention mechanism, knowledge graph

中图分类号: