兰州理工大学学报 ›› 2025, Vol. 51 ›› Issue (4): 88-94.

• 自动化技术与计算机技术 • 上一篇    下一篇

基于长短期记忆神经网络局部认知结构的最优非线性卡尔曼滤波

陈辉*1, 胡荣海1, 席磊2   

  1. 1.兰州理工大学 自动化与电气工程学院, 甘肃 兰州 730050;
    2.甘肃省科学院 自动化研究所, 甘肃 兰州 730000
  • 收稿日期:2022-08-07 出版日期:2025-08-28 发布日期:2025-09-05
  • 通讯作者: 陈辉(1978-),男,山西闻喜人,博士,教授,博导.Email:huich78@hotmail.com
  • 基金资助:
    国家自然科学基金(62163023,61873116,62366031,62363023),甘肃省基础研究创新群体项目(25JRRA058),中央引导地方科技发展资金项目(25ZYJA040),甘肃省军民融合发展专项资金,甘肃省重点人才项目(2024RCXM86)

Optimal nonlinear Kalman filter based on local cognitive structure of long-term and short-term memory neural network

CHEN Hui1, HU Rong-hai1, XI Lei2   

  1. 1. School of Automation and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China;
    2. Institute of Automation, Gansu Academy of Sciences, Lanzhou 730000, China
  • Received:2022-08-07 Online:2025-08-28 Published:2025-09-05

摘要: 为了解决复杂非线性目标跟踪中状态空间模型参数不准确、滤波性能变差的问题,提出一种基于长短期记忆神经网络局部认知结构的最优非线性卡尔曼滤波.首先,在贝叶斯滤波框架下用长短期记忆神经网络认知卡尔曼增益这一组件,以数据驱动的方式逼近最优卡尔曼增益,不需要完全了解底层模型参数,可以在具有部分信息非线性状态下执行扩展卡尔曼滤波.其次,使用一种无监督离线训练算法,不需要提供真实数据,而是通过滤波器的可解释性,根据预测下一时刻观测的内部特征进行无监督损失函数计算.通过仿真验证表明,在非线性模型中的参数不准确时,提出的滤波器性能优于传统滤波器.

关键词: 扩展卡尔曼滤波, 长短期记忆神经网络, 深度学习, 数据驱动

Abstract: To solve the problems of inaccurate state space model parameters and poor filtering performance in complex nonlinear target tracking, an optimal nonlinear Kalman filter based on local cognitive structure using a long-term and short-term memory neural network is proposed. Firstly, in the framework of Bayesian filtering, long-term and short-term memory neural network is adopted to recognize Kalman gain, which approximates optimal Kalman gain in a data-driven way. It does not need to fully understand the underlying model parameters, and the extended Kalman filter can be performed in the nonlinear state with partial information. Next, an unsupervised off-line training algorithm is used, which does not need to provide real data, but calculates the unsupervised loss function according to internal characteristics of the observation at the next time through filter interpretability. Simulation results show that the proposed filter can significantly improve the performance in comparison with traditional filter when the parameters in nonlinear model are inaccurate.

Key words: extended Kalman filter, long-term and short-term memory neural network, deep learning, data driven

中图分类号: