兰州理工大学学报 ›› 2025, Vol. 51 ›› Issue (5): 81-91.

• 自动化技术与计算机技术 • 上一篇    下一篇

一种基于多样性指标排序的多模态多目标算法

曹洁1, 齐志2, 陈作汉*1, 张建林1   

  1. 1.兰州理工大学 计算机与人工智能学院, 甘肃 兰州 730050;
    2.兰州理工大学 自动化与电气工程学院, 甘肃 兰州 730050
  • 收稿日期:2022-11-17 发布日期:2025-10-25
  • 通讯作者: 陈作汉(1979-),男,甘肃会宁人,博士,副教授. Email:chenzh@lut.edu.cn
  • 基金资助:
    国家重点研发计划项目(2020YFB1713600)

A multi-modal multi-objective algorithm based on diversity indicator ranking

CAO Jie1, QI Zhi2, CHEN Zuo-han1, ZHANG Jian-lin1   

  1. 1. School of Computer and Artificial Intelligence, Lanzhou University of Technology, Lanzhou 730050, China;
    2. School of Automation and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
  • Received:2022-11-17 Published:2025-10-25

摘要: 多模态多目标优化问题中决策空间与目标空间的多样性都会对算法的性能产生重要的影响,为更好地平衡两个空间的多样性,提出一种基于多样性指标排序的多模态多目标优化算法 (D-DNEAL).D-DNEAL首先将K-近邻密度估计方法构造为一个多样性指标,并将其引入快速非支配排序中对个体进行排序,保证收敛性差但分布性好的个体仍有机会被选中进入下一代,从而提高了种群的搜索能力.然后通过多前沿存档机制保存多样性更好的个体,使得算法能够定位更多的局部最优解.为验证D-DNEAL在多模态多目标优化问题上的性能,将其与6种最新的多模态多目标优化算法在28个多模态多目标优化测试函数上进行对比,实验结果证明了D-DNEAL在求解多模态多目标问题上是有效的.

关键词: 多模态多目标优化, 多样性指标, 多前沿存档, 双小生境适应度共享函数, 非支配排序

Abstract: In multi-modal multi-objective optimization, the diversity in both the decision space and the objective space plays a critical role in the impact on the performance of the algorithm. To better balance the diversity between the two, proposes a multi-modal multi-objective optimization algorithm based on diversity index ranking (D-DNEAL) is proposed in this paper. First, D-DNEAL constructs a diversity indicator using the K-nearest neighbor density estimation method, which is then integrated into the fast non-dominated sorting process to rank individuals. This ensures that individuals with poor convergence but good distribution still have a chance to be selected for the next generation, thereby improving the search ability of the population. Additionally, multi-frontier archiving mechanism is introduced to preserve the individuals with better diversity, so that the algorithm can obtain more local optimal solutions. To verify the performance of D-DNEAL on multi-modal multi-objective optimization problems, six state-of-the-art algorithms are used to make a comparison on 28 multi-modal multi-objective optimization test problems. The results show that the D-DNEAL is effective in solving multi-modal multi-objective problems.

Key words: multi-modal multi-objective optimization, diversity indicator, multiple frontier archives, double niche fitness sharing function, non-dominant sort

中图分类号: