[1] NILSSON J,SILVLIN J,BRANNSTROM M,et al.If,when,and how to perform lane change maneuvers on highways [J].IEEE Intelligent Transportation Systems Magazine,2016,8(4):68-78. [2] 张志远,倪国新,徐艳国.轨迹预测技术的现状及发展综述 [J].电子测量技术,2020,43(13):111-116. [3] JAIN A,SINGH A,KOPPULA H S,et al.Recurrent neural networks for driver activity anticipation via sensory-fusion architecture [C]//IEEE International Conference on Robotics and Automation.Stockholm:IEEE,2016:3118-3125. [4] LEE N,CHOI W,VERNAZA P,et al.DESIRE:distant future prediction in dynamic scenes with interacting agents[C]//30th IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:2165-2174. [5] GUPTA A,JOHNSON J,LI F F,et al.Socially acceptable trajectories with generative adversarial networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Salt Lake City:IEEE,2018:2255-2264. [6] ALAHI A,GOEL K,RAMANATHAN V,et al.Social LSTM:human trajectory prediction in crowded spaces [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Seattle:IEEE,2016:961-971. [7] 曹 凯,于善义,于少伟.基于多隐马尔可夫模型的车辆机动行为识别与预测 [J].信息与控制,2014,43(4):506-512. [8] GENG X L,LIANG H W,YU B,et al.A scenario adaptive driving behavior prediction approach to urban autonomous driving [J].Applied Sciences-Basel,2017,7(4):426-416. [9] ZIEBART B D,MASS A L,DEY A K,et al.Navigate like a cabbie:probabilistic reasoning from observed context-aware behavior [C]//10th International Conference on UbiquitousComputing.Seoul:Assoc Computing Machinery,2008:322-331. [10] MORZY M.Mining frequent trajectories of moving objects for location prediction [C]//5th International Conference on Machine Learning and Data Mining in Pattern Recognition.Leipzig:Springer-Verlag Berlin,2007:667-680. [11] CHO S B.Exploiting machine learning techniques for location recognition and prediction with smartphone logs [J].Neurocomputing,2016,176:98-106. [12] HOCHREITER S,SCHMIDHUBER J.Long short-term memory [J].Neural Computation,1997,9(8):1735-1780. [13] ALTCHE F,DE LA FORTELLE A.An LSTM network for highway trajectory prediction [C]//2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC).Yokohama:IEEE,2017:353-359. [14] SCHEEL O,NAGARAJA S,SCHWARZ L,et al.Attention-based lane change prediction [C]//IEEE International Conference on Robotics and Automation ICRA.Montreal:IEEE,2019:8655-8661. [15] BI H K,FANG Z,MAO T L,et al.Joint prediction for kinematic trajectories in vehicle-pedestrian-mixed scenes [C]//IEEE International Conference on Computer Vision.Seoul:IEEE,2019:10382-10391. [16] 徐洪敏.LSTM网络在船舶航行轨迹预测中的应用 [J].舰船科学技术,2021,43(8):37-39. [17] PARK S H,KIM B D,KANG C M,et al.Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture [C]//2018 IEEE Intelligent Vehicles Symposium (IV).Changshu:IEEE,2018:1772-1678. [18] WANG C,MA L,LI R,et al.Exploring trajectory prediction through machine learning methods [J].IEEE Access,2019,7(99):101441-101452. [19] 刘 创,梁 军.基于注意力机制的车辆运动轨迹预测 [J].浙江大学学报(工学版),2020,54(6):1156-1163. [20] 王皓昕,李振龙,赵晓华.加权指数损失下长短时记忆网络换道意图识别模型 [J].科学技术与工程,2021,21(1):254-259. [21] 韩 皓,谢 天.基于注意力Seq2Seq网络的高速公路交织区车辆变道轨迹预测 [J].中国公路学报,2020,33(6):106-118. [22] ZHOU Y,LI Z M,XIAO S J,et al.Auto-conditioned recurrent networks for extended complex human motion synthesis [C/OL].[2021-09-15].http://arxiv.org/pdf/1707.05363v3.pdf. [23] COLYAR J,HALKIAS J.US highway 101 dataset [R].Washington:Federal Highway Administration (FHWA),2007:10-16. [24] COLYAR J,HALKIAS J.US highway 80 dataset [R].Washington:Federal Highway Administration (FHWA),2006:36-42. [25] DEO N,TRIVEDI M M.Multi-modal trajectory prediction of surrounding vehicles with maneuver based LSTMs [C] //2018 IEEE Intelligent Vehicles Symposium(IV).Changshu:IEEE,2018:1179-1184. [26] DEO N,TRIVEDI M M.Convolutional social pooling for vehicle trajectory prediction[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.Salt Lake City:IEEE,2018:1549-1557. |