文章编号: 1673-5196(2022)03-0169-04

对偶 τ-Rickart 模

李煜彦*,何东林

(陇南师范高等专科学校 数信学院, 甘肃 陇南 742500)

摘要:设 $\tau = (\mathcal{T}, \mathcal{F})$ 表示遗传挠理论,引入了对偶 τ -Rickart 模的概念. 称 M 是对偶 τ -Rickart 模,如果对任意 $\psi \in \operatorname{End}(M)$, $\pi_{\tau}^{-1}(\operatorname{Im} \overline{\psi}) = \operatorname{Im} \psi + \tau(M)$ 是 M 的直和因子. 研究了对偶 τ -Rickart 模的性质,给出了对偶 τ -Rickart 模的等价刻画. 进而,证明了 M 是 τ -Rickart 模并且 $\frac{M}{\tau(M)}$ 具有 C_2 条件当且仅当 M 是对偶 τ -Rickart 模并且 $\frac{M}{\tau(M)}$ 具有 D_2 条件.

关键词:对偶τ-Rickart模;τ-Rickart模;直和因子

中图分类号: O153.3 文献标志码: A

Dual τ-Rickart modules

LI Yu-yan, HE Dong-lin

(College of Mathematics and Information Sciences, Longnan Teachers College, Longnan 742500, China)

Abstract: Let $\tau = (\mathcal{T}, \mathcal{F})$ be a hereditary torsion theory, the concept of dual τ -Rickart module is introduced. A module M is called dual τ -Rickart if $\pi_{\tau}^{-1}(\operatorname{Im} \bar{\psi}) = \operatorname{Im} \psi + \tau(M)$ is a direct summand of M for every $\psi \in \operatorname{End}(M)$. Properties of dual τ -Rickart module are studied, some equivalent characterizations to be dual τ -Rickart are given. Moreover, it is proved that M is τ -Rickart and $M/(\tau(M))$ has C_2 condition if and only if M is dual τ -Rickart and $M/(\tau(M))$ has D_2 condition.

Key words: dual τ-Rickart module; τ-Rickart module; direct summand

Rickart 环是 Baer 环的一个重要的推广,其相关理论已经成为环论中的经典内容[1]. Rizvi 和 Roman Baer 性质从环推广到模,得到了 Baer 模与 extending 模之间的紧密联系,同时还证明了 Baer 模的自同态环是 Baer 环. 随后,Rizvi 和 Roman 列画了半准素遗传环,使得这类环上的投射模是 Baer 模. 作为 Baer 模的推广,Lee 等[4] 和 Agayev 等[5] 引入了模的 Rickart 性质,证明了 Rickart 模的自同态环是 Rickart 环,以及 R 是半遗传环当且仅当任意 R-模是 Rickart 模. 2011 年,Lee 等[6] 提出了对偶 Rickart 模的概念,并利用模的对偶 Rickart 性质刻画了半单环、Von Neumann 正则环和右遗传环. 2011 及 2015 年,Asgari 等[7-8] 利用

收稿日期: 2020-12-24

基金项目: 甘肃省高等学校创新能力提升项目(2019B-224),甘

肃省高等学校创新基金(2020A-277,2021B-364)

通讯作者:李煜彦(1983-),男,甘肃西和人,硕士,讲师.

Email: nwnulyy@126. com

第二奇异子模的研究方法引入了 t-本质子模,并借助 t-本质子模相继提出并研究了 t-extending 模,t-Rickart 模和对偶 t-Rickart 模。此后,许多作者 [9-12] 对 Rickart 模及其相关问题进行了更加广泛的研究,得到了一些有意义的结论。 2020 年,李煜彦等 [13-14] 从遗传挠理论的角度引入了 τ -Rickart 模,它是 t-Rickart 模的推广,文中举例说明了 τ -Rickart 模和 Rickart 模没有相互蕴含关系。本文引入了对偶 τ -Rickart 模的概念,研究了对偶 τ -Rickart 模的性质,给出了对偶 τ -Rickart 模的等价刻画,证明了 t-Rickart 模并且 t-Rickart 模并是 t-Rickart 模并且 t-Rickart 模并且 t-Rickart 模并是 t-Rickart 模的

 $\tau(M)$ M 是对偶 τ -Rickart 模并且 $\frac{M}{\tau(M)}$ 具有 D_2 条件. 本

文中的环都是有单位元的结合环,模指酉右 R-模, 挠理论均指遗传挠理论. 用 $\tau(M)$ 表示 M 的所有 τ - 挠子模的和. 其他与挠理论有关的相关概念参见文

献[9]. 设 $\phi \in \text{End}(M)$, 令 $\tau_M(\phi) = \{m \in M \mid \phi(m) \in M\}$

$$\tau(M)$$
 $\}$ $, \bar{\psi}$ $: M \to \frac{M}{\tau(M)} (\bar{\psi}(m) = \psi(m) + \tau(M), \forall m \in M)$, 以及 π_{τ} $: M \to \frac{M}{\tau(M)} (\pi_{\tau}(m) = m + \tau(M), \forall m \in M)$, 显然 $\bar{\psi}$ $, \pi_{\tau} \in \text{Hom}(M, \frac{M}{\tau(M)})$.

1 预备知识

定义 $\mathbf{1}^{[14]}$ 称 M 是 τ -Rickart 模, 如果对任意 $\psi \in \operatorname{End}(M)$, $\tau_M(\psi)$ 是 M 的直和因子.

定义 $2^{[6]}$ 称 M 是对偶 Rickart 模,如果对任 意 $\psi \in \text{End}(M)$, Im $\psi = \psi(M)$ 是 M 的直和因子.

定义 3 称 M 是对偶 τ -Rickart 模,如果对任意 $\phi \in \operatorname{End}(M)$, $\pi_{\tau}^{-1}(\operatorname{Im} \overline{\psi}) = \operatorname{Im} \phi +_{\tau}(M)$ 是 M 的直和因子. 称 R 是对偶 τ -Rickart 环,如果 R_R 是对偶 τ -Rickart 模.

引理 1^[13] τ-Rickart 模的直和因子是 τ-Rickart 模.

引理 $2^{[13-14]}$ 设 M 是模,则下列条件等价:

- 1) M 是 τ-Rickart 模;
- 2) $M = \tau(M) \oplus M'$, 其中 M'是(τ-挠自由) Rickart 模;
- 3) 对任意 $f \in \text{End}(M)$, $f^{-1}(\tau(M))$ 是 M 的直和因子;
- 4) 对任意 $f \in \text{End}(M)$, 短正合序列 $0 \rightarrow \tau_M(f) \rightarrow M \rightarrow \frac{M}{\tau_M(f)} \rightarrow 0$ 是可裂的.

引理 $\mathbf{3}^{[4]}$ 设 M 是模, $S = \operatorname{End}(M)$. 则下列条件等价:

- 1) M 是具有 C₂ 条件的 Rickart 模;
- 2) S 是 von Neumann 正则环;
- 3) 对任意 $\varphi \in S$, Ker φ 和 Im φ 是 M 的直和因子.

2 主要结论

命题 1 设 M 是模,则以下结论成立:

- 1) 若 M 是 τ -挠自由模,则 M 是对偶 τ -Rickart 模当且仅当 M 是对偶 Rickart 模;
- 2) 若M 是非奇异模,则M 是对偶t-Rickart 模当且仅当M 是对偶 Rickart 模;
- 3) 若 M 是 τ -挠自由且非奇异模,则 M 是对偶 τ -Rickart 模当且仅当 M 是对偶 t-Rickart 模当且仅 当 M 是对偶 Rickart 模.

证明 显然.

由文献[13-15]知,直和因子包含 $\tau(M)$ 的 τ -

Rickart 模和 τ -Baer 模分别具有 SIP 性质和强 SIP 性质. 对偶地,直和因子包含 $\tau(M)$ 的对偶 τ -Rickart 模,下面结论成立.

命题 2 设 M 是模, N_1 , N_2 是 M 的且包含 $\tau(M)$ 直和因子. 若 M 是对偶 τ -Rickart 模,则 N_1 + N_2 是 M 的直和因子.

证明 设 N_1 , N_2 是 M 的直和因子,则存在 $e_i^2 = e_i \in \operatorname{End}(M)$,使得 $N_i = eM_i$ (i = 1, 2). 易知 $N_1 + N_2 = e_1 M \oplus (1 - e_1) e_2 M$. 由于 $\tau(M) \subseteq e_i M$,以及 M 是对偶 τ -Rickart 模,故 $(1 - e_1) e_2 M$ 是 τ -挠自由的,且 $(1 - e_1) e_2 M \oplus \tau(M)$ 是 M 的直和因子. 于是存在 $f^2 = f \in \operatorname{End}(M)$,使得 $(1 - e_1) e_2 M = fM$. 显然 $e_1 f = 0$,因此

$$N_1 + N_2 = e_1 M \oplus (1 - e_1) e_2 M = e_1 M \oplus f M = (e_1 + f - e_1 f) M$$

从而 $N_1 + N_2$ 是 M 的直和因子.

下面结论说明对偶 τ-Rickart 模保持直和因子.

定理 1 设 M 是模,L 是 M 的直和因子. 若 M 是对偶 τ -Rickart 模,则 L 是对偶 τ -Rickart 模.

证明 设 $M = L \oplus L', \phi \in \operatorname{End}(L).$ 令 $\phi = \phi \oplus 1_{L'}, \text{其中 } 1_{L'} \text{是 } L' \text{上 } \text{的恒等自同态}, \text{则 } \phi \in \operatorname{End}(M).$ 因为 $\tau(M) = \tau(L) \oplus \tau(L'), \text{所以 Im } \phi + \tau(M) = (\operatorname{Im } \phi + L') + (\tau(L) \oplus \tau(L')) = (\operatorname{Im } \phi + \tau(L)) \oplus L'.$ 由于 M 是对偶 τ -Rickart 模, 故存在 $N \leq M$, 使 得 $M = (\operatorname{Im } \phi + \tau(L)) \oplus L' \oplus N.$ 于是 $L = (\operatorname{Im } \phi + \tau(L)) \oplus [(L' \oplus N) \cap L)], \text{即 Im } \phi + \tau(L) \text{是 } L$ 的 直和因子. 从而 L 是对偶 τ -Rickart 模.

由定理1,易得如下两个推论.

推论1 R 是对偶 τ -Rickart 环当且仅当每个循环投射 R-模是对偶 τ -Rickart 模.

证明 充分性)显然.

必要性)设R 是对偶 τ -Rickart 环,M 是循环投射R-模.则存在R 的理想J,使得J 是R 的直和因子,且 $M \cong J$.由定理1 知,J 是对偶 τ -Rickart 模,因此M 是对偶 τ -Rickart 模.

推论 2 设 R 是环,考虑以下条件:

- 1) 每个自由 R-模是对偶 τ-Rickart 模;
- 2) 每个投射 R-模是对偶 τ-Rickart 模;
- 3) 每个平坦 R-模是对偶 τ-Rickart 模.

则 $3) \Rightarrow 2) \Leftrightarrow 1$). 当任意 R-模是有限表示模时, $2) \Rightarrow 3$).

证明 因为自由模都是投射的,且投射模都是平坦的,所以 $3) \Rightarrow 2) \Rightarrow 1$)成立.

1)⇒2) 设M 是投射模,则存在自由模F,使得M 是F 的直和因子. 由 1)知,F 是对偶 τ -Rickart

模,故由定理 1 知,M 是对偶 τ -Rickart 模.

2)⇒3)因为有限表示平坦模是投射的,故结论成立.

下面给出对偶 τ-Rickart 模的等价刻画.

定理 2 设 M 是模,则下列条件等价:

- 1) M 是对偶 τ-Rickart 模;
- 2) 存在 $W \leq M$, 使得 $M = \tau(M) \oplus W$, 其中 W是(τ -挠自由)对偶 Rickart 模;
- 3) 对于每个 $\operatorname{End}(M)$ 的有限子集 Λ , $\sum_{\phi \in \Lambda} \pi_{\tau}^{-1}(\operatorname{Im} \bar{\psi}) \, \text{是} \, M \, \text{的直和因子};$
- 4) 对于每个 $\operatorname{End}(M)$ 的有限生成右理想 I, $\sum_{\tau \in I} \pi_{\tau}^{-1}(\operatorname{Im} \bar{\psi}) \not \equiv M$ 的直和因子;
 - 5) 对任意 $\phi \in \text{End}(M)$,短正合序列

$$0 \longrightarrow \pi_{\tau}^{-1}(\operatorname{Im} \bar{\psi}) \xrightarrow{\iota} M \xrightarrow{\pi} \frac{M}{\pi_{\tau}^{-1}(\operatorname{Im} \bar{\psi})} \longrightarrow 0$$

是可裂的,其中 ι 和 π 分别是包含同态和自然满同态。

证明 1) \Rightarrow 2) 设 M 是对偶 τ -Rickart 模,0 是 M 上的零同态. 则 $\tau(M) = \operatorname{Im} 0 + \tau(M)$ 是 M 的直和因子. 于是存在 $W \leq M$,使得 $M = \tau(M) \oplus W$,易知 W 是 τ -挠自由的,由命题 1 和定理 1 知,W 是对偶 Rickart 模.

2) \Rightarrow 1) 设 $\psi \in \text{End}(M)$ $\iota : W \to M$ 是包含同态, $\pi : M \to W$ 是标准投射. 则

 $\operatorname{Im} \psi + \tau(M) = \operatorname{Im}(\pi\psi \iota) + \tau(M)$ 因为W 是对偶 Rickart 模,所以 $\operatorname{Im}(\pi\psi \iota)$ 是W 的直和因子. 因此 $\operatorname{Im} \psi + \tau(M)$ 是M 的直和因子,从而M 是对偶 τ -Rickart 模.

1)→3) 由命题 2 得证.

 $3)\Rightarrow 4)$ 设 I 是 End(M)的有限生成右理想,则存在 $\phi_i \in End(M)$ $(i=1,2,\cdots,n)$,使得

$$I = \sum_{i=1}^{n} \psi_i \operatorname{End}(M)$$

于是

$$\sum_{\psi \in I} \pi_{\tau}^{-1}(\operatorname{Im} \overline{\psi}) = \sum_{i=1}^{n} \pi_{\tau}^{-1}(\operatorname{Im} \overline{\psi_{i}})$$

由 3) 知, $\sum_{m \in I} \pi_{\tau}^{-1}(\operatorname{Im} \bar{\psi})$ 是 M 的直和因子.

4)⇒1) 设
$$\phi \in \operatorname{End}(M)$$
, $I = \phi \operatorname{End}(M)$. 则
$$\sum_{\phi \in I} \pi_{\tau}^{-1} (\operatorname{Im} \overline{\phi}) = \pi_{\tau}^{-1} (\operatorname{Im} \overline{\phi})$$

由 4)知, π_{τ}^{-1} (Im ϕ)是 M 的直和因子. 因此 M 是对偶 τ -Rickart 模.

1)⇔5) 对任意 ϕ ∈ End(M),短正合序列

$$0 \longrightarrow \pi_{\tau}^{-1}(\operatorname{Im} \bar{\psi}) \stackrel{\iota}{\longrightarrow} M \stackrel{\pi}{\longrightarrow} \frac{M}{\pi_{\tau}^{-1}(\operatorname{Im} \bar{\psi})} \longrightarrow 0$$

可裂当且仅当对任意 $\phi \in \text{End}(M)$, $\pi_{\tau}^{-1}(\text{Im }\overline{\psi}) = \text{Im } \phi +_{\tau}(M)$ 是 M 的直和因子当且仅当 M 是对偶 τ -Rickart 模.

推论 3 若环 R 是半单的,则任意 R-模 M 都是对偶 τ -Rickart 模,且其 τ -挠子模 $\tau(M)$ 是投射的.

证明 设 $\phi \in \text{End}(M)$. 因为 R 是半单的,所以 $\tau(M)$ 是投射的,且短正合序列

$$0 \longrightarrow \pi_{\tau}^{-1}(\operatorname{Im} \bar{\psi}) \xrightarrow{\iota} M \xrightarrow{\pi} \frac{M}{\pi_{\tau}^{-1}(\operatorname{Im} \bar{\psi})} \longrightarrow 0$$

可裂. 由定理 2 知,M 是对偶 τ -Rickart 模.

命题 3 设 M 是模. 若 $\frac{M}{\tau(M)}$ 是投射的,则 M 是对偶 τ -Rickart 模当且仅当 $\operatorname{End}\left(\frac{M}{\tau(M)}\right)$ 是 von Neumann 正则环.

证明 必要性)设 M 是对偶 τ -Rickart 模, $\psi \in$ End(M). 则 $\pi_{\tau}^{-1}(\operatorname{Im}\bar{\psi}) = \operatorname{Im}\psi + \tau(M)$ 是 M 的直和因子,故 $\operatorname{Im}\bar{\psi}$ 是 $\frac{M}{\tau(M)}$ 的直和因子. 因为 $\frac{M}{\tau(M)}$ 是投射的,所以 $\operatorname{Im}\bar{\psi}$ 是投射的. 而 $\frac{M}{\operatorname{Ker}\bar{\psi}} \cong \operatorname{Im}\bar{\psi}$,于是 $\operatorname{Ker}\bar{\psi}$ 是 M 的直和因子,因此 M 是 τ -Rickart 模. 由

引理 2 和定理 2 知, $\frac{M}{\tau(M)}$ 是 Rickart 模和对偶 Rickart 模. 从而由引理 3 知, $\operatorname{End}\left(\frac{M}{\tau(M)}\right)$ 是 von Neu-

mann 正则环.

充分性)设 $\operatorname{End}\left(\frac{M}{\tau(M)}\right)$ 是 von Neumann 正则 环,则由引理 3 知, $\frac{M}{\tau(M)}$ 是对偶 Rickart 模. 由于

 $\frac{M}{\tau(M)}$ 是投射的,故 $\tau(M)$ 是 M 的直和因子. 于是由定理 2 知,M 是对偶 τ -Rickart 模.

推论 4 设 M 是投射模. 则 M 是对偶 τ -Rickart 模当且仅当 M 是 τ -Rickart 模且 $\operatorname{End}\left(\frac{M}{\tau(M)}\right)$ 是 von Neumann 正则环.

证明 必要性)设 M 是对偶 τ -Rickart 模,则由定理 2 知, $\tau(M)$ 是 M 的直和因子. 于是由命题 3 知,End $\left(\frac{M}{\tau(M)}\right)$ 是 von Neumann 正则环,因此

 $\frac{M}{\tau(M)}$ 是 Rickart 模. 由文献[13-14]知,M是 τ -Rick-

art 模.

充分性)设 M 是 τ -Rickart 模,则 $\tau(M)$ 是 M 的直和因子. 又因为 $\operatorname{End}\left(\frac{M}{\tau(M)}\right)$ 是 von Neumann 正则环,所以由命题 3 知,M 是对偶 τ -Rickart 模.

称模 M 满足 C_2 条件,如果对任意 $L \leq M$,若 L 与 M 的某个直和因子同构,则 L 是 M 的直和因子. 称模 M 满足 D_2 条件,如果对任意 $L \leq M$,若 $\frac{M}{L}$ 与 M 的某个直和因子同构,则 L 是 M 的直和因子.

引理 $4^{[4]}$ M 是 Rickart 模当且仅当 M 具有 D_2 条件并且对任意 $\varphi \in End(M)$, $Im \varphi$ 同构于 M 的某个直和因子.

引理 $\mathbf{5}^{[6]}$ M 是对偶 Rickart 模当且仅当 M 具有 C_2 条件并且对任意 $\varphi \in \operatorname{End}(M)$, $\operatorname{Im} \varphi$ 同构于 M 的某个直和因子.

由模的 C_2 条件和 D_2 条件可知, τ -Rickart 模和 对偶 τ -Rickart 模之间有如下联系.

定理 3 设 M 是模. 则 M 是 τ -Rickart 模并且 $\frac{M}{\tau(M)}$ 具有 C_2 条件当且仅当 M 是对偶 τ -Rickart 模并且 $\frac{M}{\tau(M)}$ 具有 D_2 条件.

证明 必要性)设 M 是 τ -Rickart 模,则由引理 2 知, $M = \tau(M) \oplus M'$,其中 M'是(τ -挠自由) Rickart 模. 由引理 4 知, $M' \cong \frac{M}{\tau(M)}$ 具有 D_2 条件. 设 $\psi \in \operatorname{End}(M')$,则 Ker ψ 是 M'的直和因子. 由于 $\frac{M'}{\operatorname{Ker} \psi} \cong \operatorname{Im} \psi$,故 $\operatorname{Im} \psi$ 同构于 M'的某个直和因子. 又因为 $\frac{M}{\tau(M)}$ 具有 C_2 条件,所以 $\operatorname{Im} \psi$ 是 M'的直和 因子,因此 M'是对偶 Rickart 模. 于是由定理 2 知,M 是对偶 τ -Rickart 模.

充分性) 设M 是对偶 τ -Rickart 模,则由定理 2 知, $M = \tau(M) \oplus M'$,其中 M'是 $(\tau$ -挠自由)对偶

Rickart 模. 由引理 5 知, $\frac{M}{\tau(M)}$ 具有 C_2 条件. 与必要性类似的证明过程可证, M 是 τ -Rickart 模.

参考文献:

- [1] LAM T Y. Lectures on modules and rings [M]. New York: Springer, 1999.
- [2] RIZVI S T, ROMAN C S. Baer and quasi-Baer modules [J]. Comm Algebra, 2004, 32(1): 103-123.
- [3] RIZVI S T, ROMAN C S. On direct sums of Baer modules [J]. J Algebra, 2009, 321(2):682-696.
- [4] LEE G, RIZVI S T, ROMAN C S. Rickart modules [J]. Comm Algebra, 2010, 38(11): 4005-4027.
- [5] AGAYEV N, HALICIOGLU S, HARMANCI A. On Rickart modules [J]. Bull Iran Math Soc, 2012, 38(2):433-445.
- [6] LEE G, RIZVI S T, ROMAN C S. Dual Rickart modules [J]. Comm Algebra, 2011, 39(11): 4036-4058.
- [7] ASGARI S H, HAGHANY A. t-extending modules and t-Baer modules [J]. Comm Algebra, 2011, 39(5):1605-1623.
- [8] ASGARI S H, HAGHANY A. t-Rickart and dual t-Rickart modules [J]. Algebra Colloq, 2015, 22(1);849-870.
- [9] ÇEKEN S, ALKAN M. Singular and nonsingular modules relative to a torsion theory [J]. Comm Algebra, 2017, 45(8): 3377-3389.
- [10] UNGOR B, HALICIOGLU S, HARMANCI A. Rickart modules relative to singular submodule and dual Goldie torsion theory [J]. Journal Algebra Appl, 2016, 15(8):1-8.
- [11] ABDELWHAB T, YANG X Y. Modules whose endomorphism rings are right rickart [J]. Asian J Math, 2019, 13(2): 1-14.
- [12] HAZRAT R, VAŠ L. Baer and Baer * -ring characterizations of Leavitt path algebras [J]. J Pure Appl Algebra, 2018, 17 (1):39-60.
- [13] 李煜彦,王奇临. 相关于遗传挠理论的 Rickart 模 [J]. 湖北民族大学学报(自然科学版),2020,38(3):241-244.
- [14] 李煜彦,何东林. τ-Rickart 模和相对 τ-Rickart 模 [J]. 西北师 范大学学报(自然科学版),2020,56(6):1-4.
- [15] 李煜彦,王胜青. 相关于挠理论的 Baer 模 [J]. 汕头大学学报 (自然科学版),2020,35(4):21-26.