兰州理工大学学报 ›› 2020, Vol. 46 ›› Issue (2): 158-160.

• 数理科学 • 上一篇    下一篇

非负矩阵Hadamard积谱半径的上界

钟琴   

  1. 四川大学锦江学院 数学教学部, 四川 彭山 620860
  • 收稿日期:2018-03-30 出版日期:2020-04-28 发布日期:2020-06-23
  • 作者简介:钟琴(1982-),女,四川自贡人,副教授.
  • 基金资助:
    国家自然科学基金(11471225),四川省教育厅科研项目(18ZB0364)

Upper bound of spectral radius of Hadamard product of nonnegative matrices

ZHONG Qin   

  1. Department of Mathematics,Jinjiang College Sichuan University, Pengshan 620860, China
  • Received:2018-03-30 Online:2020-04-28 Published:2020-06-23

摘要: 在Gerschgorin圆盘定理和Brauer卵形定理的基础上,利用相似矩阵具有相同特征值的特点给出非负矩阵Hadamard积谱半径的上界,所得结果只依赖于两个非负矩阵的元素,便于计算.数值例子表明新估计式在一定条件下改进了现有的一些结果.

关键词: 非负矩阵, Hadamard积, 谱半径, 上界

Abstract: Based on the Gerschgorin disc theorem and Brauer oval theorem, the upper bound of the spectral radius of Hadamard product of nonnegative matrices is given by applying the fact that the similar matrices have the same eigenvalues, the result obtained depends only on two entries of nonnegative matrices,so that they are easy to calculate. Numerical example shows that the newestimation formula will improve several existing resultsunder certain condition.

Key words: nonnegative matrix, Hadamard product, spectral radius, upper bound

中图分类号: