兰州理工大学学报 ›› 2021, Vol. 47 ›› Issue (3): 150-155.

• 数理科学 • 上一篇    下一篇

基于拉普拉斯度的k-均匀超图的图熵极值

卢鹏丽*, 薛玉龙   

  1. 兰州理工大学 计算机与通信学院, 甘肃 兰州 730050
  • 收稿日期:2019-12-19 出版日期:2021-06-28 发布日期:2021-07-19
  • 通讯作者: 卢鹏丽(1973-),女,甘肃酒泉人,博士,教授,博导.Emial:lupengli88@163.com
  • 基金资助:
    国家自然科学基金(11361033)

Extremality of graph entropy based on Laplacian degrees of k-uniform hypergraphs

LU Peng-li, XUE Yu-long   

  1. College of Computer and Communication, Lanzhou Univ. of Tech., Lanzhou 730050, China
  • Received:2019-12-19 Online:2021-06-28 Published:2021-07-19

摘要: 基于一般图中图熵的定义,定义了超图基于拉普拉斯度的图熵.将简单图的图熵的一些结论推广到k-均匀超图.利用一种移边操作,分别确定了在k-均匀超树、单圈k-均匀超图、双圈k-均匀超图和k-均匀化学超树中基于拉普拉斯度的图熵最大值和最小值,并确定了相应的极值图.

关键词: 图熵, 超图, 拉普拉斯度

Abstract: Motivated by the definition of graph entropy in general graphs, the graph entropy of hypergraphs based on Laplacian degree are defined. Some results on graph entropy of simple graphs are extended to k-uniform hypergraphs. By an operation of edge moving, the maximum and minimum graph entropy based on Laplacian degrees are determined in k-uniform hypertrees, unicyclic k-uniform hypergraphs, bicyclic k-uniform hypergraphs and k-uniform chemical hypertrees, respectively, and the corresponding extremal graphs are determined.

Key words: graph entropy, hypergraph, Laplacian degree

中图分类号: