摘要: 设R是具有单位元的结合环, X是包含所有平坦模的R-模类.引入X-丁投射模和X-丁投射维数的定义并研究了相关性质.如果存在正合列P=∶…→P1→P0→P0→P1→…, 其中Pi, Pi是投射模, i∈Z, 对于任意R-模F∈X,HomR(-, F)作用在正合列P上保持正合,并且M=Ker(P0→P1), 那么称M是X-丁投射模. 证明了X-丁投射模类是投射可解的并且X-丁投射模保持直和与直和项,同时证明了若GX-Dpd(R)<∞,则(X-DP(R),(X-DP(R))⊥)是完备遗传余挠对.
中图分类号: