兰州理工大学学报 ›› 2022, Vol. 48 ›› Issue (2): 73-80.

• 自动化技术与计算机技术 • 上一篇    下一篇

高斯混合标签多伯努利滤波器的传感器控制策略

陈辉*, 刘雅婷, 王莉   

  1. 兰州理工大学 电气工程与信息工程学院, 甘肃 兰州 730050
  • 收稿日期:2020-11-02 出版日期:2022-04-28 发布日期:2022-05-07
  • 通讯作者: 陈 辉(1978-),男,山西闻喜人,博士,教授,博导.Email:huich78@hotmail.com
  • 基金资助:
    国家自然科学基金(62163023,61873116,61763029)

Sensor control strategy of Gaussian mixture labeled multi-Bernoulli filter

CHEN Hui, LIU Ya-ting, WANG Li   

  1. College of Electrical and Information Engineering, Lanzhou Univ. of Tech., Lanzhou 730050, China
  • Received:2020-11-02 Online:2022-04-28 Published:2022-05-07

摘要: 针对多目标跟踪优化中的传感器控制问题,提出一种基于高斯混合标签多伯努利滤波器的快速传感器控制策略,并将其用于基于目标威胁度评估的风险评估中.首先,给出高斯混合标签多伯努利滤波器的实现形式,并对两个高斯混合之间的柯西施瓦兹散度求解.其次,利用多伯努利部分替代传感器控制中标签多伯努利伪更新步骤,即在多伯努利更新过程中采用了去标签化处理,显著降低了传感器控制算法的复杂度.此外,在采用一般传感器控制方法的基础上,提出了以最大威胁度目标信息增益最大化为准则进行最终控制方案求解.仿真实验验证了所提算法的有效性和快速性.

关键词: 多目标跟踪, 传感器控制, 标签多伯努利滤波器, 目标威胁度

Abstract: Aiming at the sensor control problem in the optimization of multi-target tracking, a fast sensor control strategy based on Gaussian mixture labeled multi-Bernoulli filter is proposed, and is used in the risk assessment based on the target threat assessment. First, the paper presents the realization form of the Gaussian mixture labeled multi-Bernoulli filter, and studies the calculation of the Cauchy Schwarz divergence between two Gaussian mixtures. Secondly, multi-Bernoulli is used to partially replace the labeled multi-Bernoulli filter pseudo update step in sensor control, that is, removing tagging is adopted in the process of multi-Bernoulli update, which significantly reduces the complexity of sensor control algorithm. In addition, based on the general sensor control method, the ultimate control scheme is solved by maximizing the target information gain of the maximum threat degree as the criterion. Simulation results show the effectiveness and rapidity of the proposed algorithm.

Key words: multi-target tracking, sensor control, labeled multi-Bernoulli filter, target threat degree

中图分类号: