兰州理工大学学报 ›› 2022, Vol. 48 ›› Issue (2): 90-96.

• 自动化技术与计算机技术 • 上一篇    下一篇

基于动态MDONPE算法的间歇过程故障检测

赵小强*1,2,3, 刘凯1   

  1. 1.兰州理工大学 电气工程与信息工程学院, 甘肃 兰州 730050;
    2.兰州理工大学 甘肃省工业过程先进控制重点实验室, 甘肃 兰州 730050;
    3.兰州理工大学 国家级电气与控制工程实验教学中心, 甘肃 兰州 730050
  • 收稿日期:2020-08-27 出版日期:2022-04-28 发布日期:2022-05-07
  • 通讯作者: 赵小强(1969-),男,陕西岐山,博士,教授,博导.Email:xqzhao@lut.edu.cn
  • 基金资助:
    国家自然科学基金(61763029),甘肃省科技计划资助项目(21YF5GA072, 21JR7RA206),国家重点研发计划项目(2020YFB1713600),甘肃省教育厅产业支撑计划项目(2021CYZC-02)

Fault detection of batch process based on dynamic MDONPE algorithm

ZHAO Xiao-qiang1,2,3, LIU Kai1   

  1. 1. College of Electrical and Information Engineering, Lanzhou Univ. of Tech., Lanzhou 730050, China;
    2. Gansu Key Laboratory of Advanced Control for Industrial Processes, Lanzhou Univ. of Tech., Lanzhou 730050, China;
    3. National Experimental Teaching Center of Electrical and Control Engineering, Lanzhou Univ. of Tech., Lanzhou 730050, China
  • Received:2020-08-27 Online:2022-04-28 Published:2022-05-07

摘要: 针对间歇过程数据存在的非线性和动态特性导致故障检测效果不佳的问题,提出一种基于滑动窗(sliding window,SW)的多向差分正交邻域保持嵌入(multiway differential orthogonal neighborhood preserving embedded,MDONPE)算法.首先对间歇过程数据进行预处理,找到样本的最近邻,将样本与最近邻进行差分运算;然后对NPE算法进行投影向量正交化得到具有正交约束的正交邻域保持嵌入算法,利用正交邻域保持嵌入算法进行降维和特征提取,进一步利用滑动窗策略,选择合适的窗口宽度,合并窗口内的采样数据,使得故障样本的特征更加明显;最后通过检测T2 和SPE统计量判断是否发生故障.利用青霉素发酵仿真过程数据并与MPCA、KNPE算法进行对比验证,结果显示SW-MDONPE算法在故障检测中对比其他算法有更好的检测效果.

关键词: 间歇过程, 故障检测, 正交邻域保持嵌入, 差分策略, 滑动窗

Abstract: To solve the problem of poor fault detection effect due to the nonlinear and dynamic characteristics of the data in the batch process, a multiway differential orthogonal neighborhood preserving embedding (MDONPE) algorithm based on the sliding window (SW) is proposed. Firstly, the data of the batch process is preprocessed to find the nearest neighbors of the samples, and the difference operations between the samples and the nearest neighbors is carried out. Then the orthogonal neighborhood preserving embedding algorithm with orthogonal constraints is obtained by orthogonalizing NPE algorithm, and the orthogonal neighborhood preserving embedding algorithm is used to reduce dimensions and extract features. The sliding window strategy is used to combine and achieve the error accumulation by selecting the sampling data within the window width, which can make the features of the fault samples more obvious. Finally, the fault is judged by detection, and the T2 and SPE statistics are used to judge if faults have occurred. The data of the Penicillin fermentation simulation process are used and compared with MPCA and KNPE algorithms. The results show that the proposed algorithm has better detection effect than other algorithms in fault detection.

Key words: batch process, fault detection, orthogonal neighborhood preserving embedded, difference strategy, sliding window

中图分类号: