兰州理工大学学报 ›› 2022, Vol. 48 ›› Issue (6): 40-45.

• 机械工程与动力工程 • 上一篇    下一篇

结合扰动集成RBF的故障识别方法

赵荣珍*, 赵楠   

  1. 兰州理工大学 机电工程学院, 甘肃 兰州 730050
  • 收稿日期:2021-05-21 出版日期:2022-12-28 发布日期:2023-03-21
  • 通讯作者: 赵荣珍(1960-),女,山东枣庄人,博士,教授,博导.Email:zhaorongzhen@lut.edu.cn
  • 基金资助:
    国家自然科学基金(51675253)

Fault identification method combined with disturbance ensemble RBF

ZHAO Rong-zhen, ZHAO Nan   

  1. School of Mechanical and Electrical Engineering, Lanzhou Univ. of Tech., Lanzhou 730050, China
  • Received:2021-05-21 Online:2022-12-28 Published:2023-03-21

摘要: 为提高旋转机械故障识别精度,将神经网络与集成学习方法进行结合,提出结合扰动方式的集成RBF故障模式识别方法.首先,通过ReliefF算法计算所提取出的转子故障特征数据集各个特征的权重,并且将权重值进行降序排列,从而筛选出权重趋大的系列特征构成低维特征数据集;其次,将较大权重作为无放回轮盘赌法的输入,对权重所对应的低维特征数据集进行特征扰动,产生系列化低维数据子集并将其划分为训练集和测试集;然后,采用Bagging算法中的自助采样法对训练集进行样本扰动,以此形成新的训练集并用于训练对应个数的RBF神经网络,完成差异性子分类器的构建;最终,对各个神经网络的测试数据辨识结果通过相对多数投票法进行结合,得到故障识别结果.实验结果表明,对于转子系统的故障识别,该方法相较于未集成RBF神经网络、集成BP神经网络具有较高的识别精度,并且拥有较好的泛化性能.

关键词: ReliefF算法, 集成学习, RBF神经网络, 特征扰动, 样本扰动

Abstract: In order to improve the fault recognition accuracy of rotating machinery, an ensemble RBF fault pattern recognition method combining neural network and ensemble learning method is proposed. First, the extracted rotor fault feature dataset is used to calculate the weights of each feature by ReliefF algorithm, which are arranged in descending order to filter out the series of features with larger weights to form a low-dimensional feature dataset. Secondly, the larger weights are used as the input of the non-relaxation roulette algorithm to perturb the series low-dimensional feature dataset and divided them into training sets and testing sets by disturbing corresponding low-dimensional data datasets. Then, the new training set is perturbed by the self-sampling method in the Bagging algorithm to train the corresponding number of RBF neural networks to further complete the construction of the discrepancy subclassifier. Finally, the test data identification results of each neural network are combined with the relative majority voting method to obtain the fault identification results. The experimental results show that for the fault identification of rotor system, the proposed method has higher identification accuracy and better generalization performance compared to nonensemble RBF neural network and ensemble BP neural network.

Key words: ReliefF lgorithm, ensemble learning;RBF neural network, feature disturbance, sample disturbance

中图分类号: