[1] 雷亚国,何正嘉.混合智能故障诊断与预示技术的应用进展 [J].振动与冲击,2011,30(9):129-135. [2] BUXTON B,GOLDSTON D,DOCTOROW C,et al.Big data:Science in the petabyte era [J].Nature,2008,455(7209):8-9. [3] 张春霞,张讲社.选择性集成学习算法综述 [J].计算机学报,2011,34(8):1399-1410. [4] 周志华.机器学习 [M].北京:清华大学出版社,2016. [5] 张永峰,陆志强.基于集成神经网络的剩余寿命预测 [J].工程科学学报,2020,42(10):1372-1380. [6] ZHAO Jiaqi,JIAO Licheng,XIA Shixiong,et al.Multiobjective sparse ensemble learning by means of evolutionary algorithms [J].Decision Support Systems,2018,111:86-100. [7] CUI Shaoze,WANG Yanzhang,YIN Yunqiang,et al.A cluster-based intelligence ensemble learning method for classification problems [J].Information Sciences,2021,560:386-409. [8] BROWN G,KUNCHEVA L.“Good” and “Bad” diversity in majority vote ensembles [C]//Proceedings of the 9th International Conference on Multiple Classifier Systems.Berlin:Springer,2010:124-133. [9] SUN Tao,ZHOU Zhihua.Structural diversity for decision tree ensemble learning [J].Frontiers of Computer Science,2018,12(3):560-570. [10] ZHANG Chunxia,ZHANG Jiangshe.A variant of rotation forest for constructing ensemble classifiers [J].Pattern Analysis and Applications,2010,13(1) :59-77. [11] 马森财.旋转机械典型故障辨识及分类可视化问题研究 [D].兰州:兰州理工大学,2020. [12] 薛 瑞,赵荣珍.ReliefF与QPSO结合的故障特征选择算法 [J].振动与冲击,2020,39(11):171-176,208. [13] DASARATHY B V,SHEELA B V.A composite classifier system design:Concepts and methodology [J].Proceedings of the IEEE,1979,67(5):708-713. [14] PULIDO M,MELIN P,CASTILLO O.Particle swarm optimization of ensemble neural networks with fuzzy aggregation for time series prediction of the Mexican Stock Exchange [J].Information Sciences,2014,280:188-204. [15] 洪骥宇,王华伟,车畅畅,等.改进降噪自编码的航空发动机气路故障诊断 [J].振动、测试与诊断,2019,39(3):603-610,675. [16] 赵军阳,韩崇昭,韩德强,等.采用互补信息熵的分类器集成差异性度量方法 [J].西安交通大学学报,2016,50(2):13-19. [17] 霍天龙,赵荣珍,胡宝权.基于熵带法与PSO优化的SVM转子故障诊断 [J].振动、测试与诊断,2011,31(3):279-284,392. |