[1] 世界卫生组织.霍乱 [EB/OL].[2022-02-14].https://www.who.int/zh/news-room/fact-sheets/detail/cholera. [2] BAI N,SONG C W,XU R.Mathematical analysis and application of a cholera transmission model with waning vaccine-induced immunity [J].Nonlinear Analysis:Real World Applications,2021,58:103232. [3] 廖 书,杨炜明.一类非标准离散霍乱动力学模型 [J].工程数学学报,2019,36(1):85-98. [4] SHARMA S,SINGH F.Bifurcation and stability analysis of a cholera model with vaccination and saturated treatment [J].Chaos,Solitons and Fractals,2021,146:110912. [5] TIAN X H,XU R,LIN J Z.Mathematical analysis of a cholera infection model with vaccination strategy [J].Applied Mathematics and Computation,2019,361:517-535. [6] WANG S F,HU L,NIE L F.Global dynamics and optimal control of an age-structure Malaria transmission model with vaccination and relapse [J].Chaos,Solitons and Fractals,2021,150:111216. [7] 孙丹丹,李盈科,滕志东,等.具有年龄结构的麻疹传染病模型的稳定性分析 [J].数学物理学报,2021,41(6):1950-1968. [8] LIN J Z,XU R,TIAN X H.Global dynamics of an age-structured cholera model with both human-to-human and environment-to-human transmissions and saturation incidence [J].Applied Mathematical Modelling,2018,63:688-708. [9] YANG J Y,MODNAK C,WANG J.Dynamical analysis and optimal control simulation for an age-structured cholera transmission model [J].Journal of the Franklin Institute-Engineering and Applied Mathematics,2019,356(15):8438-8467. [10] 梁霜霜,聂麟飞,胡 琳.具有年龄结构和水平传播的媒介传染病模型研究 [J].华东师范大学学报(自然科学版),2021(3):47-55. [11] CHA Y,IANNELLI M,MILNER F A.Existence and uniqueness of endemic states for the age-structured SIR epidemic model [J].Mathematical Biosciences,1998,150(2):117-133. [12] WEBB G F.Theory of nonlinear age-dependent population dynamics [M].New York:Marcel Dekker,1985. [13] INABA H.Threshold and stability results for an age-structured epidemic model [J].Journal of Mathematical Biology,1990,28:411-434. [14] DIEKMANN O,HEESTERBEEK J A P,METZ J A J.On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations [J].Journal of Mathematical Biology,1990,28(4):365-382. [15] SCHMEIDLER D.Fatou's lemma in several dimensions [J].Proceedings of the American Mathematical Society,1970,24(2):300-306. |