兰州理工大学学报 ›› 2023, Vol. 49 ›› Issue (3): 88-93.

• 自动化技术与计算机技术 • 上一篇    下一篇

深度可分卷积结合多通道注意力的垃圾图像快速分类模型

王星*1,*, 晏榕璟2   

  1. 1.石河子开放大学, 新疆 石河子 832000;
    2.西交利物浦大学 理学院, 江苏 苏州 215123
  • 收稿日期:2021-09-19 出版日期:2023-06-28 发布日期:2023-07-07
  • 通讯作者: 王星(1980-),女,四川郫县人,讲师. Email:38588170@qq.com

Fast garbage images classification model based on depthwise separable convolution combined with multi-channel attention

WANG Xing1, YAN Rong-jing2   

  1. 1. Shihezi Open University, Shihezi 832000, China;
    2. School of Science, Xi’an Jiaotong Liverpool University, Suzhou 215123, China;
  • Received:2021-09-19 Online:2023-06-28 Published:2023-07-07

摘要: 针对传统垃圾图像分类模型结构复杂和实时性不强的问题,提出了一种深度可分卷积结合多通道注意力机制的垃圾图像快速分类模型.该模型首先利用深度卷积和逐点卷积的拼接模型构造深度可分卷积,通过减少卷积运算参数量降低模型训练时间开销;然后,引入多通道注意力机制,使模型对于强分类能力的特征具有更高的关注度;最后,在TrashNet、Garbage-classify和GINI等开源垃圾图像分类数据集上进行测试.实验结果表明,该模型相比当前主流垃圾图像分类模型,在保持识别精度较高的基础上,具有更小的时间开销和更广的检测范围.

关键词: 垃圾图像分类, 深度卷积, 逐点卷积, 多通道注意力机制

Abstract: Aiming at the problems of complex structure and poor real-time performance of traditional garbage image classification models, a fast garbage images classification model based on depthwise separable convolution combined with a multi-channel attention mechanism was proposed. Firstly, depthwise separable convolution is constructed by using deep convolution and pointwise convolution, and the training time overhead of the mode is reduced by reducing the number of convolution parameters. Then the multi-channel attention mechanism is introduced to make the model pay more attention to the features with strong classification ability. Finally, the test is performed on open-source garbage image classification data sets such as TrashNet、Garbage-classify, and GINI. The experimental results show that the model has a lower time overhead than the current mainstream garbage image classification models while maintaining a higher recognition accuracy.

Key words: garbage images classification, deep convolution, pointwise convolution, multi-channel attention

中图分类号: