[1] LORENZ E N.Deterministic non-periodic flow [J].Journal of the Atmospheric Sciences,1963,20(2):130-141. [2] DONG E Z,WANG Z,YU X,et al.Topological horseshoe analysis and field-programmable gate array implementation of a fractional-order four-wing chaotic attractor [J].Chinese Physics B,2018,27(1):010503. [3] WANG J Y,MOU J,YAN H Z,et al.A three-port switch NMR laser chaotic system with memristor and its circuit implementation [J].The European Physical Journal Plus,2021,136(11):1112. [4] CXA B,RZA B,Yl C.New chaotic memristive cellular neural network and its application in secure communication system-science direct [J].Chaos,Solitons & Fractals,2020,141:110316. [5] 颜闽秀,徐 辉.新分数阶混沌系统的电路设计和同步控制 [J].兰州理工大学学报,2021,47(1):105-112. [6] YAN M X,XU H.The multi-scroll hyper-chaotic coexistence attractors and its application [J].Signal Processing Image Communication,2021,95:116210. [7] 张泽峰,黄丽莲,项建弘,等.新的具有宽参数范围的五维保守超混沌系统的动力学研究 [J].物理学报,2021,11(10):1-22. [8] DONG E Z,LI R H,DU S Z.A multi-directional controllable multi-scroll conservative chaos generator:modelling,analysis and FPGA implementation [J].Chinese Physics B,2021,30(2):020505. [9] 薛 薇,张永超.保守超混沌在数字图像加密中的应用 [J].计算物理,2020,37(4):497-504. [10] WANG N,ZHANG G S,KUZNETSOV N V,et al.Hidden attractors and multistability in a modified Chua’s circuit [J].Communications in Nonlinear Science and Numerical Simulation,2021,92:105494. [11] DONG E Z,YUAN M F,DU S Z,et al.A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator [J].Applied Mathematical Modelling,2019,73:40-71. [12] WANG Z,QI G Y.Modeling and analysis of a three-terminal-memristor-based conservativechaotic system [J].Entropy,2021,23(1):71. [13] JAFARI S,SPROTT J C,DEHGHAN S.Categories of conservative flows [J].International Journal of Bifurcation and Chaos,2019,29(2):1950021. [14] QI G Y,HU J B,WANG Z.Modeling of a Hamiltonian conservative chaotic system and its mechanism routes from periodic to quasiperiodic,chaos and strong chaos [J].Applied Mathematical Modelling,2020,78:350-365. [15] POURASAD Y,RANJBARZADEH R,MARDANI A.A new algorithm for digital image encryption based on chaos theory [J].Entropy,2021,23(3):341. [16] CHEN L,HAO Y,HUANG T,et al.Chaos in fractional-order discrete neural networks with application to image encryption [J].Neural Networks,2020,125:174-184. [17] HU G,LI B.A uniform chaotic system with extended parameter range for image encryption [J].Nonlinear Dynamics,2021(1):1-22. [18] LIU J Y,YANG D D,ZHOU H B,et al.A digital image encryption algorithm based on bit-planes and an improved logistic map [J].Multimedia Tools and Applications,2018,77(8):10217-10233. [19] YILDIRIM M,KACAR F.Chaotic circuit with OTA based memristor on image cryptology [J].AEU-International Journal of Electronics and Communications,2020,127:153490. [20] FENG W,HE Y G,LI H M,et al.Image encryption algorithm based on discrete logarithm and memristive chaotic system [J].The European Physical Journal Special Topics,2019,228(10):1951-1967. [21] XIU C,ZHOU R,ZHAO S,et al.Memristive hyperchaos secure communication based on sliding mode control [J].Nonlinear Dynamics,2021(4):1-17. [22] WANG Y,LI C,CHENG D.New approaches to generalized Hamiltonian realization of autonomous nonlinear systems [J].Science in China (Series F),2003,46(6):431-444. |