兰州理工大学学报 ›› 2024, Vol. 50 ›› Issue (1): 110-115.

• 建筑科学 • 上一篇    下一篇

人行桥在行人荷载激励下的非平稳随机响应

朱前坤*, 曾新   

  1. 兰州理工大学 防震减灾研究所, 甘肃 兰州 730050
  • 收稿日期:2020-10-09 出版日期:2024-02-28 发布日期:2024-03-04
  • 通讯作者: 朱前坤(1981-),男,江苏徐州人,博士,教授. Email:zhuqk@lut.edu.cn
  • 基金资助:
    国家自然科学基金(51668042,51868046)

Non-stationary random response of pedestrian bridge under pedestrian load excitation

ZHU Qian-kun, ZENG Xin   

  1. Institute of Earthquake Protection and Disaster Mitigation, Lanzhou Univ. of Tech., Lanzhou 730050, China
  • Received:2020-10-09 Online:2024-02-28 Published:2024-03-04

摘要: 采用虚拟激励法和微分求积法相结合的DQ-PEM法研究在行人荷载激励下人行桥的非平稳随机响应.与以往的虚拟激励法不同的是该方法以简单谱模型为基础,建立行人强迫函数的谱密度,求得多自由度体系人行荷载下的多模态.通过工程算例验证该方法的准确性与有效性,并进一步讨论不同速度和不同约束条件下梁式结构受行人荷载作用的随机振动问题.

关键词: 谱模型, 行人荷载, 虚拟激励, 非平稳随机响应, DQ-PEM方法

Abstract: The differential quadrature-probabilistic collocation (DQ-PEM) method, which combines the virtual excitation method and differential quadrature method, is used to study the non-stationary random response of pedestrian bridges under pedestrian excitation. Different from the previous virtual excitation method, this method, based on the simplified spectral model, establishes the spectral density of the pedestrian forcing function, to obtain the multi-modal of the multi-degree of freedom system under pedestrian load. The accuracy and effectiveness of the proposed method are verified by the engineering case. Furthermore, the stochastic vibration problems of beam-type structures under pedestrian loading at different velocities and under various constraint conditions are discussed.

Key words: spectral model, pedestrian load, virtual excitation, non-stationary random response, DQ-PEM

中图分类号: