兰州理工大学学报 ›› 2024, Vol. 50 ›› Issue (1): 152-157.

• 数理科学 • 上一篇    下一篇

四元数矩阵方程(A1XB1,…,AkXBk)=(C1,…,Ck)的极小范数最小二乘Toeplitz

石俊岭, 李莹*, 王涛, 张东惠, 邱新   

  1. 聊城大学 数学科学学院, 山东 聊城 252000
  • 收稿日期:2022-08-23 出版日期:2024-02-28 发布日期:2024-03-04
  • 通讯作者: 李莹(1974-),女,山东聊城人,博士,教授. Email:liyingld@163.com
  • 基金资助:
    国家自然科学基金(62176112),山东省自然科学基金(ZR2020MA053)

Minimal norm least square Toeplitz solution of quaternion matrix equation (A1XB1,…,AkXBk)=(C1,…,Ck)

SHI Jun-ling, LI Ying, WANG Tao, ZHANG Dong-hui, QIU Xin   

  1. School of Mathematical Sciences, Liaocheng University, Liaocheng 252000, China
  • Received:2022-08-23 Online:2024-02-28 Published:2024-03-04

摘要: 基于四元数矩阵实表示,结合矩阵H-表示和矩阵半张量积提出一种求解四元数矩阵方程(A1XB1,…,AkXBk)=(C1,…,Ck)的极小范数最小二乘Toeplitz解的有效方法,给出该四元数矩阵方程存在Toeplitz解的充要条件及通解表达式.给出数值算法并通过算例分别从误差与计算时间两个方面验证该方法的有效性.

关键词: 四元数矩阵方程, 矩阵半张量积, 极小范数最小二乘Toeplitz解, 实表示, H-表示

Abstract: Based on the real representation of the quaternion matrix, combined with the matrix H-representation and semi-tensor product of matrices, an effective method for solving the minimal norm least square Toeplitz solution of the quaternion matrix equation (A1XB1,…,AkXBk)=(C1,…,Ck) is proposed in this paper. The necessary and sufficient condition for the existence of Toeplitz solution to the quaternion matrix equation are provided, and a general expression of solutions is also obtained. The numerical algorithm is given, and examples are given to verify the effectiveness of the method in terms of error and computation time.

Key words: quaternion matrix equation, semi-tensor product of matrices, the minimal norm least square Toeplitz solution, real representation, H-representation

中图分类号: