兰州理工大学学报 ›› 2024, Vol. 50 ›› Issue (2): 69-76.

• 自动化技术与计算机技术 • 上一篇    下一篇

基于多尺度残差和注意力机制的图像去雾算法

陈辉*1, 牛丽丽1, 付辉1, 张天佑2, 席磊2   

  1. 1.兰州理工大学 电气工程与信息工程学院, 甘肃 兰州 730050;
    2.甘肃省科学院 自动化研究所, 甘肃 兰州 730000
  • 收稿日期:2022-01-12 出版日期:2024-04-28 发布日期:2024-04-29
  • 通讯作者: 陈 辉(1978-),男,山西闻喜人,博士,教授,博导.Email:huich78@hotmail.com
  • 基金资助:
    国家自然科学基金(62163023,62366031,62363023,61873116),甘肃省教育厅产业支撑计划(2021CYZC-02),甘肃省科学院重大专项(2023ZDZX-03),2023年甘肃省军民融合发展专项资金项目,甘肃省2024年度重点人才项目

Image dehazing algorithm based on multi-scale residual and attention mechanism

CHEN Hui1, NIU Li-li1, FU Hui1, ZHANG Tian-you2, XI Lei2   

  1. 1. College of Electrical Engineering and Information Engineering, Lanzhou Univ. of Tech., Lanzhou 730050, China;
    2. Institute of Automation, Gansu Academy of Sciences, Lanzhou 730050, China
  • Received:2022-01-12 Online:2024-04-28 Published:2024-04-29

摘要: 雾的存在严重降低了图像的质量,阻碍了后续对图像的进一步处理.针对已有去雾算法特征提取不充分等问题,提出了一种端到端的基于多尺度空洞残差块和多尺度注意力机制的图像去雾算法.首先,通过三个小尺度的卷积核进行卷积运算提取雾图的浅层特征,可以在得到较大感受野的同时降低参数量.然后,将其输入多个由多尺度残差空洞卷积特征提取模块和多尺度注意力机制模块串联组成的网络模块,多尺度空洞卷积残差特征提取模块可以提取不同感受野的雾图特征并进行不同维度的特征融合,有效解决特征尺度单一问题;多尺度注意力机制模块可合理分配不同特征的权重,并抑制无关的冗余信息.最后,把雾图中的雾特征筛减便得到去雾图的特征图,再通过卷积操作恢复出无雾图像.通过在SOTS测试集上测试,得到了比其他几种经典方法更好的视觉效果,且在PSNR和SSIM上的表现也优于其他几种经典方法.

关键词: 图像去雾, 残差空洞卷积, 注意力机制, 特征提取, 深度学习

Abstract: The presence of fog severely reduces the image quality and hinders further image processing as well as the corresponding feature information extraction. An end-to-end image defogging algorithm based on a multi-scale hole residual block and multi-scale attention mechanism is proposed to address the problems of inadequate feature extraction of existing defogging algorithms. First, the shallow features of the fog map were extracted by three small-scale convolution kernels, which can obtain a large receptive field and reduce the number of parameters. Then, it was input into a plurality of network modules composed of a multi-scale residual hole convolution feature extraction module and multi-scale attention mechanism module in series, in which the multi-scale hole convolution residual feature extraction module could extract the fog map features of different receptive fields and fuse the features of different dimensions to effectively solve the problem of single feature scale, while the multi-scale attention mechanism module reasonably allocated the weights of different features and suppressed irrelevant redundant information. Finally, the fog features in the fog map were filtered to obtain the feature map of the defogging map, followed by restoring the fog-free image using convolution operation. By testing on the sots test set, better visual effects are obtained compared with other classical methods, and the performance on PSNR and SSIM is also better than other classical methods.

Key words: image defogging, residual hole convolution, attention mechanism, feature extraction, deep learning

中图分类号: