兰州理工大学学报 ›› 2024, Vol. 50 ›› Issue (2): 96-103.

• 自动化技术与计算机技术 • 上一篇    下一篇

基于KPCA特征量降维的风电并网系统暂态电压稳定性评估

张晓英*1, 史冬雪2, 张琎2, 张鑫3   

  1. 1.兰州理工大学 电气工程与信息工程学院, 甘肃 兰州 730050;
    2.国网甘肃省电力公司陇南供电公司, 甘肃 陇南 746000;
    3.国网甘肃省电力公司 超高压公司, 甘肃 兰州 730000
  • 收稿日期:2022-05-09 出版日期:2024-04-28 发布日期:2024-04-29
  • 通讯作者: 张晓英(1973-),女,四川仁寿人,教授.Email:245659219@qq.com
  • 基金资助:
    国家自然科学基金(51867015)

Transient voltage stability assessment of wind power grid connected system based on KPCA feature dimension reduction

ZHANG Xiao-ying1, SHI Dong-xue2, ZHANG Jin2, ZHANG Xin3   

  1. 1. College of Electrical and Information Engineering, Lanzhou Univ. of Tech., Lanzhou 730050, China;
    2. State Grid Gansu Electric Power Company Longnan Power Supply Company, Longnan 746000, China;
    3. Ultra high Voltage Company of State Grid Gansu Electric Power Company, Lanzhou 730000, China
  • Received:2022-05-09 Online:2024-04-28 Published:2024-04-29

摘要: 针对电力系统暂态电压稳定性评估中所需特征量数据庞大,影响模型训练时间,降低计算效率等问题,提出了一种基于核主成分分析方法KPCA和CPSO-BP组合的风电并网系统暂态电压稳定性评估方法.首先根据输入特征采集原始特征集,采用核主成分分析算法对特征量进行非线性数据处理,提取出最优的特征集.然后将降维后的特征集作为CPSO-BP神经网络输入量进行监督学习,将得到的模型按照临界故障切除时间裕度值的大小进行分类,将分类后的样本进行风电并网系统的暂态电压稳定性评估和临界故障切除时间裕度值预测.仿真分析结果表明,对输入特征进行降维,保留重要输入特征量,剔除冗余特征量,不仅简化了模型,还提高了网络评估的准确性和计算效率.

关键词: 风电并网, 核主成分分析算法, 降维, CPSO-BP神经网络, 暂态电压稳定性评估

Abstract: Aiming at addressing challenges such as the extensive data requirements for feature extraction, prolonged model training times, and reduced computational efficiency in present assessment, a method for evaluating transient voltage stability in wind power integration systems is proposed based on the combination of kernel principal component analysis(KPCA) and chaos particle swarm optimization (CPSO) and back-propagation (BP) neural network. Firstly, the raw feature set is collected according to the input features, followed by nonlinear data processing using KPCA to extract the optimal feature set. Then, the reduced dimension feature set is used as the input of the CPSO-BP neural network for supervised learning. The obtained model is categorized according to the margin of critical fault removal time. The classified samples are used for transient voltage stability evaluation and critical fault removal time margin prediction of wind power grid-connected systems. Finally, the simulation analysis results show that reducing the dimension of the input features, retaining the important input features, and eliminating the redundant features, not only simplifies the model but also improves the accuracy and calculation efficiency of network evaluation.

Key words: wind power grid connection, kernel principal component analysis algorithm, dimension reduction, CPSO-BP neural network, transient voltage stability assessment

中图分类号: