兰州理工大学学报 ›› 2024, Vol. 50 ›› Issue (4): 36-42.

• 机械工程与动力工程 • 上一篇    下一篇

基于OVMD-RF方法的风力发电机滚动轴承故障诊断

郑玉巧*1, 李浩1, 魏泰2,3   

  1. 1.兰州理工大学 机电工程学院, 甘肃 兰州 730050;
    2.国家风力发电设备质量监督检验中心, 甘肃 兰州 730050;
    3.甘肃省特种设备检验检测研究院, 甘肃 兰州 730050
  • 收稿日期:2022-05-03 出版日期:2024-08-28 发布日期:2024-08-30
  • 通讯作者: 郑玉巧(1977-),女,甘肃庄浪人,博士,教授.Email:zhengyuqiaolut@163.com
  • 基金资助:
    国家自然科学基金(51965034),兰州市人才创新创业项目(2018-RC-25)

Rolling bearing fault diagnosis of wind turbine based on OVMD-RF method

ZHENG Yu-qiao1, LI Hao1, WEI Tai2,3   

  1. 1. School of Electrical and Mechanical Engineering, Lanzhou Univ. of Tech., Lanzhou 730050, China;
    2. National Center of Quality Supervision and Inspection for Wind Power Equipment, Lanzhou 730050, China;
    3. Gansu Province Special Equipment Inspection and Testing Institute, Lanzhou 730050, China
  • Received:2022-05-03 Online:2024-08-28 Published:2024-08-30

摘要: 风电机组运行时轴承受到交变应力和冲击载荷,振动信号非线性、不平稳且具有噪声,特征提取不充分.针对风力发电机轴承故障信号处理和特征提取的固有缺陷,提出了基于优化变分模态分解与随机森林算法结合的故障诊断方法.首先,利用乌燕鸥优化算法对变分模态分解的参数进行搜索寻优;然后,利用优化参数的变分模态分解对滚动轴承振动信号进行分解,获得模态分量;最后,以峰值、峭度和包络熵构建融合特征训练集,并输入至随机森林分类器进行模型训练,实现故障识别.实例分析的结果表明,该方法识别风力发电机轴承故障的准确率高达100%,可实现故障的准确判别.

关键词: 风电机组, 特征提取, 故障诊断, 优化变分模态分解, 随机森林算法

Abstract: The bearings of the wind turbine are subjected to alternating stresses and shock loads during operation, leading to nonlinear, non-stationary, and noisy vibration signals, thus rendering conventional feature extraction insufficient. Aiming at the inherent defects in the wind turbine bearings failure message processing and feature extraction for wind turbine bearing fault diagnosis, a novel method has been proposed on the basis of the optimal Variational Modal Decomposition combined with a random forest algorithm. Firstly, The technique utilizes the sooty tern optimization algorithm to conduct a search optimization of the values in the variables for the variational modal decomposition. Subsequently, the method with optimized parameters is employed to decompose the vibration signal of rolling bearing signals to obtain modal components. Finally, the peak value, kurtosis, and envelope entropy are applied to construct the fusion feature training set and input them into the random forest classifier to realize fault recognition. The results of the case analysis demonstrate the efficacy of the proposed methodology to identify faults in achieving a fault recognition accuracy of up to 100% for wind turbine bearing faults, facilitating accurate fault discrimination.

Key words: wind turbine, feature extraction, fault diagnosis, optimal variational modal decomposition, random forest algorithm

中图分类号: