兰州理工大学学报 ›› 2025, Vol. 51 ›› Issue (5): 163-166.

• 数理科学 • 上一篇    下一篇

非负不可约矩阵谱半径的估计

李娜1, 钟琴*2   

  1. 1.吉利学院 智能科技学院, 四川 成都 641423;
    2.四川大学锦江学院 数学教学部, 四川 眉山 620860
  • 收稿日期:2023-09-26 出版日期:2025-10-28 发布日期:2025-10-25
  • 通讯作者: 钟 琴(1982-),女,四川自贡人,教授. Email:bbs3_zq@126.com
  • 基金资助:
    眉山市科技厅项目(2024KJZD163)

Bounds for the spectral radius of nonnegative irreducible matrices

LI Na1, ZHONG Qin2   

  1. 1. School of Intelligence Technology, Geely University of China, Chengdu 641423, China;
    2. Department of Mathematics, Sichuan University Jinjiang College, Meishan 620860, China
  • Received:2023-09-26 Online:2025-10-28 Published:2025-10-25

摘要: 借助非负矩阵的非零行和, 将经典的Gerschgorin圆盘定理和Hölder不等式应用于非负矩阵谱半径的估计,得到非负矩阵谱半径易于计算的上下界表达式.该方法可操作性强,且能得到较紧的上下界.通过具体的算例验证结果的精确性.

关键词: 非负矩阵, 不可约, 谱半径, 上界, 下界

Abstract: Based on the nonzero row sums of nonnegative matrices, the classical Gerschgorin disk theorem and Hölder inequality are applied to estimate the spectral radius of a nonnegative matrix, and the expressions of the upper and lower bounds of the spectral radius of a nonnegative matrix are obtained. The proposed methods have good operability and can get tight upper and lower bounds. Finally, the accuracy of the results is verified by specific arithmetic examples.

Key words: nonnegative matrix, irreducible, spectral radius, upper bound, lower bound

中图分类号: