[1] HUFFMAN W,PLESS V.Fundamentals of error-correcting codes [M].Cambridge:Cambridge University Press,2003. [2] DING K,DING C.A class of two-weight and three-weight codes and their applications in secret sharing [J].IEEE Transactions on Information Theory,2015,61(11):5835-5842. [3] DINH H,LI C,YUE Q.Recent progress on weight distributions of cyclic codes over finite fields [J].Journal of Algebra Combinatorics Discrete Structures and Applications,2015,2:39-63. [4] 杜小妮,胡金霞,金文刚,等.两类极小二元线性码的构造 [J].电子与信息学报,2022,44(10):3643-3649. [5] 杜小妮,吕红霞,王 蓉.一类四重和六重线性码的构造 [J].电子与信息学报,2019,41(12):2995-2999. [6] 高 健,张耀宗,孟祥蕊,等.几类指标为2的不可约拟循环码的重量分布 [J].电子与信息学报,2022,44(12):4312-4318. [7] HENG Z,YUE Q.A construction of q-ary linear codes with two weights [J].Finite Fields and Their Applications,2017,48:20-42. [8] TAN P,ZHOU Z,TANG D,et al.The weight distribution of a class of two-weight linear codes derived from Kloosterman sums [J].Cryptography and Communications,2018,10:291-299. [9] ZHANG A,HE C,LI W.The weight distributions of two classes of subfield codes [J].Advances in Mathematics (China),2022,51(1):183-191. [10] ZHANG A,LI W.A class of binary linear codes with few weights and its weight distribution [J].Advances in Mathematics (China),2022,51(3):569-576. [11] CANTEAUT A,CHARPIN P,DOBBERTIN H.Weight divisibility of cyclic codes,highly nonlinear functions on,and crosscorrelation of maximum-length sequences [J].SIAM Journal on Discrete Mathematics,2000,13(1):105-138. [12] CARLET C,CHARPIN P,ZINOVIEV V.Codes,bent functions and permutations suitable for DES-like cryptosystems [J].Des Codes Cryptogr,1998,15:125-156. [13] CANNON J,BOSMA W,FIEKER C,et al.Handbook of Magma functions:Version 2.19 [DB/OL].[2013-04-24].http://www.math.uzh.ch/sepp/magma-2.19.8-Cr/Handbook.pdf. [14] XIANG C,LUO J.Some subfield codes from MDS codes [J].Advances in Mathematics of Communications,2023,17(4):815-827. [15] DING C,HENG Z.The subfield codes of ovoid codes [J].IEEE Transactions on Information Theory,2019,65(8):4715-4729. [16] HENG Z,DING C.The subfield codes of hyperoval and conic codes [J].Finite Fields and Their Applications,2019,56:308-331. [17] HENG Z,DING C,WANG W.Optimal binary linear codes from maximal arcs [J].IEEE Transactions on Information Theory,2020,66:5387-5394. [18] WANG X,ZHENG D.The subfield codes of several classes of linear codes [J].Cryptography and Communications,2020,12(6):1111-1131. [19] WANG X,ZHENG D,ZHANG Y.A class of subfield codes of linear codes and their duals [J].Cryptography and Communications,2021,13:173-196. [20] HIRSCHFELD J.Projective geometries over finite fields [M].2nd ed.New York:Oxford University Press,1998. [21] DING C.Designs from linear codes [M].Singapore:World Scientific,2018. |