兰州理工大学学报 ›› 2020, Vol. 46 ›› Issue (4): 157-163.

• 数理科学 • 上一篇    下一篇

时间分数阶扩散方程的高阶Diethelm方法

杨艳1, 王希云2   

  1. 1.吕梁学院 数学系, 山西 吕梁 033000;
    2.太原科技大学 应用科学学院, 山西 太原 030024
  • 收稿日期:2019-04-03 出版日期:2020-08-28 发布日期:2020-11-10
  • 作者简介:杨 艳(1983-),女,山西吕梁人,硕士,讲师.
  • 基金资助:
    国家自然科学基金(11771184),山西省自然科学基金(201801D121010),山西省高等学校科技创新项目(2020L0700)

Higher order Diethelm method for the time fractional diffusion equation

YANG Yan1, WANG Xi-yun2   

  1. 1. Department of mathematics, Luliang University, Luliang 033000, China;
    2. School of Applied Sciences, Taiyuan University of Science and Technology, Taiyuan 030024, China
  • Received:2019-04-03 Online:2020-08-28 Published:2020-11-10

摘要: 针对时间分数阶扩散方程,提出了一种新的隐式差分方法,其中空间导数采用中心差分方法离散.对于时间分数阶导数,将Caputo分数阶导数转化为Riemman-Liouville分数阶导数后,写成Hadamard有限部分积分,再用分段二次多项式对该有限积分部分逼近,由此推导出Caputo分数阶导数的3-α阶离散方法,从而得到无条件稳定的和收敛的分数阶扩散方程的隐式差分格式.数值实验验证该隐式差分格式的有效性.

关键词: 分数阶导数, Hadamard有限部分积分, 分段二次插值多项式, 稳定性

Abstract: A new implicit difference method is proposed for a time fractional diffusion equation, in which space derivatives are discretized by the central difference method. For a time fractional derivative, the Caputo fractional derivative is transformed into the Riemman-Liouville fractional derivative, and further forming it in the form of the Hadamard finite part integral. The finite part integral is then approximated by piecewise quadratic polynomials. A new 3-α order approximation scheme to the Riemman-Liouville fractional derivative can be derived as result of the approximation. Consequently, an implicit difference scheme for fractional diffusion equations, which is unconditionally stable and convergent, can be obtained. Our numerical experiments verify effectiveness of the implicit difference scheme.

Key words: fractional derivatives, Hadamard finite-part integral, piecewise quadratic interpolation polynomials, stability

中图分类号: