兰州理工大学学报 ›› 2023, Vol. 49 ›› Issue (1): 152-157.

• 数理科学 • 上一篇    下一篇

基于矩阵半张量积求解弱双四元数调节方程

袭沂蒙, 李莹*, 刘志红, 孙建华   

  1. 聊城大学 数学科学学院, 山东 聊城 252000
  • 收稿日期:2022-03-03 出版日期:2023-02-28 发布日期:2023-03-21
  • 通讯作者: 李 莹(1974-),女,山东聊城人,博士,教授. Email:liyingld@163.com
  • 基金资助:
    国家自然科学基金(62176112),山东省自然科学基金(ZR2020MA053)

Solving reduced biquaternion regulating equation based on semi-tensor product of matrices

XI Yi-meng, LI Ying, LIU Zhi-hong, SUN Jian-hua   

  1. School of Mathematical Sciences, Liaocheng University, Liaocheng, 252000 China
  • Received:2022-03-03 Online:2023-02-28 Published:2023-03-21

摘要: 基于矩阵半张量积及弱双四元数的实向量表示,将弱双四元数调节方程A1X-A2XB=C转化为无约束的实矩阵方程,利用实矩阵方程得到弱双四元数调节方程的(anti-)Hermitian解,通过数值实验检验了此方法的有效性,并将此方法应用于时变线性系统的连续归零动力学设计.

关键词: 调节方程, 矩阵半张量积, 实向量表示, 弱双四元数矩阵

Abstract: Based on the semi-tensor product of matrices and the real vector representation of reduced biquaternion, the problem of reduced biquaternion regulating equations A1X-A2XB=C is transformed into a matrix equation on real number field without constraint, and then the (anti-)Hermitian solution of reduced biquaternion regulating equations is obtained by using real matrix equation. The effectiveness of this method is verified by numerical experiments. Finally, this method is applied to the continuous zeroing dynamics design of time-varying linear systems.

Key words: regulating equation, semi-tensor product of matrices, real vector representation, reduced biquaternion matrix

中图分类号: