[1] PODLUBNY I.Fractional differential equations [M].San-Diego:Academic press,1999. [2] DIETHELM K.The analysis of fractional differential equations:an application-oriented exposition using differential operators of Caputo type [M].Springer:Central Book Services,2010. [3] THOMEE V.Galerkin finite element methods for parabolic problems [M].2nd ed.Berkin:Springer,2006. [4] LUBICH C,SLOAN I H,THOMÉE V.Nonsmooth data error estimate for approximation of an evolution equationwith a positive-type memory term [J].Math Comput,1996,213:1-17. [5] LIN Y,LI X,XU C.Finite difference/spectral approximations for the fractional cable equation [J].Math Comput,2011,80:1369-1396. [6] HU X,ZHANG L.Implicit compact difference schemes for the fractional cable equation [J].Appl Math Model,2012,36:4027-4043. [7] BHRAWY A H,ZAKYM A.Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation [J].Nonlinear Dyn,2015,80:101-116. [8] LIU Y,DU Y W,LI H,et al.A two-grid finite element approximation for a nonlinear time-fractionalCable equation [J].Nonlinear Dyn,2016,85:2535-2548. [9] LIU Y,DU Y W,LI H,et al.Some second order schemes combined with finite element method for nonlinear fractional Cabel equation [J].J Numer Algor,2019,80:533-555. [10] QUINTANA-MURILLO J,YUSTE S B.An explicit numerical method for the fractional cable equation [J].Int J of Differ Equ,2011,2011:51-62. [11] ZHENG Y,ZHAO Z.The discontinuous Galerkin finite element method for fractional cable equation [J].Appl Numer Math,2017,115:32-41. [12] SAKAMOTO K,YAMAMOTO M.Initial value/boundary value problems for fractional diffusion wave equations and applications to some inverse problems [J].J Math Appl,2011,382:426-447. [13] MARTIN S.Too much regularity may force too much uniqueness [J].Fract Calc Appl Anal,2016,19:1554-1562. [14] STYNES M,O'RIORDAN E,GRACIA J L.Error analysis of a finite difference method on graded meshes for a time fractional diffusion equation [J].SIAM Journal on Numerical Analysis,2017,55:1057-1079. [15] YAN Y,KHAN M,FORD N J.An analysis of the modified scheme for the time fractionalpartial differential equations with nonsmooth data [J].SIAM J Numer Anal,2018,56:210-227. [16] YANG Y,YAN Y B,FORD N J.Some time stepping methods for fractional diffusion problems with nonsmooth data [J].Comput Methods Appl Math,2018,18:129-146. [17] WANG Y Y,YAN Y B,YANG Y.Two high-order time discretization schemes for subdiffusion problems with nonsmooth data [J].Fract Calc Appl Anal,2020,23:1349-1380. [18] WU X X,YAN Y Y,YAN Y Y.An analysis of the L-1 scheme for stochastic subdiffusion problem driven by integrated space-time white noise [J].Appl Numer Math,2020,157:69-87. [19] AL-MASKARI M,KARAA S.The lumped mass FEM for a time-fractional cable equation [J].Appl Numer Math,2018,132:73-90. [20] ZHU P,XIE L,WANG S.Nonsmooth data error estimates for FME approximation of the time fractionalcable equation [J].Appl Numer Math,2017,121:170-184. [21] JIN B T,LI B Y,ZHOU Z.Correction of high-order BDF convolution quadrature for fractional evolution equation equations [J].SIAM J Sci Comput,2017,39:A3129-A3152. [22] JIN B T,YAN Y,ZHOU Z.Numerical approximation of stochastic time-fractional diffusion [J].ESAIM Math Model Numer Anal,2019,53:1245-1268. |