兰州理工大学学报 ›› 2023, Vol. 49 ›› Issue (1): 158-163.

• 数理科学 • 上一篇    下一篇

时间分数阶Cable方程修正格式的误差分析

吴晓蕾*1, 杨艳1, 闫玉斌2   

  1. 1.吕梁学院 数学系, 山西 吕梁 033000;
    2.彻斯特大学 数学系, 英国 CH24BJ
  • 收稿日期:2021-12-31 出版日期:2023-02-28 发布日期:2023-03-21
  • 通讯作者: 吴晓蕾(1987-),女,山西运城人,讲师. Email:568248301@qq.com
  • 基金资助:
    国家自然科学基金(11771184),山西省自然科学研究面上项目(202103021224317),山西省自然科学基金(201801D121010),山西省高校科技创新计划项目(2020L0700)

Error analysis of modified schemes for time-fractional Cable equation

WU Xiao-lei1, YANG Yan1, YAN Yu-bin2   

  1. 1. Department of Mathematics, Lüliang University, Lüliang 033000, China;
    2. School of Mathematics and Statistics, University of Chester, Chester, CH24BJ, UK
  • Received:2021-12-31 Online:2023-02-28 Published:2023-03-21

摘要: 考虑时间分数阶Cable方程在修正的二阶向后差分格式下的误差分析.利用连续Laplace变换、反Laplace变换方法得到方程的准确解,类似得到空间有限元半离散解;运用Lubich的修正方法引入此分数阶微分方程的修正格式,离散的Laplace变换、反Laplace变换法得到Cable方程的时间离散解,进而讨论了时间离散下L2范数的误差估计,得到二阶收敛阶,并用数值算例验证了定理的结论.这个结论比不修正的情形下一阶收敛阶要高.

关键词: 分数阶Cable方程, Riemann-Liouville分数阶导, Laplace变换, 非光滑数据误差估计

Abstract: Error analysis of the modified second-order backward difference scheme for the time-fractional Cable equation is carried out. By using continuous Laplace transform and inverse Laplace transform, the exact solution of the equation is obtained, and the finite element semidiscrete solution is obtained similarly. Then Lubich's correction method is used to get the modified form of the fractional differential equation. The discrete solutions of the Cable equation are obtained by means of the discrete Laplace transform and the inverse Laplace transform. Finally, the error estimates under the norm are discussed and the second order of convergence is obtained. Numerical results verification is finally performed to validate the theoretical findings discussed here, which proved that it is better than the first order convergence without modification.

Key words: fractional Cable equation, Riemann-Liouville fractional derivative, Laplace transform, Nonsmooth data error estimation

中图分类号: