兰州理工大学学报 ›› 2023, Vol. 49 ›› Issue (5): 102-111.

• 自动化技术与计算机技术 • 上一篇    下一篇

保守系统的类混沌吸引子共存分析及图像加密

颜闽秀*1,2, 张萍1   

  1. 1.沈阳化工大学 信息工程学院, 辽宁 沈阳 110142;
    2.工业环境-资源协同控制与优化技术辽宁省高校重点实验室, 辽宁 沈阳 110142
  • 收稿日期:2021-11-28 出版日期:2023-10-28 发布日期:2023-11-07
  • 通讯作者: 颜闽秀(1972-),女,福建仙游人,博士,副教授. Email:yanminxiu@syuct.edu.cn
  • 基金资助:
    国家科技部中国-马其顿政府间科技合作项目(国科外[2019]22:6-8)

Coexistence analysis and image encryption of chaos-like attractors in conservative systems

YAN Min-xiu1,2, ZHANG Ping1   

  1. 1. College of Information Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China;
    2. Key Laboratory for Industrial Environment-Resources Cooperative Control and Optimization Technology, Shenyang 110142, China
  • Received:2021-11-28 Online:2023-10-28 Published:2023-11-07

摘要: 构造新的保守混沌系统在工程应用中具有十分重要的意义.在哈密顿广义系统理论的基础上,提出一个既是能量上又是体积上保守的混沌系统,通过分析发现该系统具有隐藏类混沌吸引子,并且混沌特性较强,具有大范围混沌状态.此外,该系统在哈密顿能量函数中存在正弦函数、余弦函数或正切函数时,分别能够产生无穷多共存类混沌吸引子.由于系统表现出良好的混沌动力学特性,适用于通信保密、图像加密等工程应用领域.最后将该系统应用于图像加密中,通过定性分析和定量分析验证了基于该系统的加密算法具有良好的保密性能.

关键词: 保守系统, 大范围混沌, 无穷多共存, 图像加密

Abstract: It is very important to construct new conservative chaotic systems in engineering applications. On the basis of Hamilton’s generalized system theory, a chaotic system that is conservative in both energy and volume is proposed. After further analysis, it is found that the system has hidden chaotic attractors with strong characteristics and a large range of chaotic states. In addition, when the conservative chaotic system has sine function, cosine function or tangent function in the Hamiltonian energy function, it can produce an infinite number of coexisting chaotic attractors. Since the system exhibits good chaotic dynamics characteristics, it is suitable for engineering applications such as communication security and image encryption. Finally, the system is applied to image encryption, and the good security performance of the encryption algorithm based on this system is verified through qualitative analysis and quantitative analysis.

Key words: conservative system, large-scale chaos, infinite coexistence, image encryption

中图分类号: