兰州理工大学学报 ›› 2024, Vol. 50 ›› Issue (6): 164-166.

• 数理科学 • 上一篇    下一篇

基-次中紧空间

蔡奇嵘*   

  1. 东华理工大学 理学院, 江西 南昌 330013
  • 收稿日期:2023-02-04 出版日期:2024-12-28 发布日期:2025-01-13
  • 通讯作者: 蔡奇嵘(1982-),女,江西南昌人,副教授.Email:200660013@ecut.edu.cn
  • 基金资助:
    江西省教育厅科技项目(GJJ200703)

Base-submesocompact spaces

CAI Qi-rong   

  1. School of Sciences, East China University of Technology, Nanchang 330013, China
  • Received:2023-02-04 Online:2024-12-28 Published:2025-01-13

摘要: 引入了基-次中紧空间,并讨论了其有关的性质:若X为基-次中紧空间,YX的一个闭子集,且ω(X)=ω(Y),则Y仍为基-次中紧空间.若X为基-次中紧空间,X′为XFσ集,则X′为相对X是基-次中紧空间.基-次中紧空间在完全映射下的逆映像仍是基-次中紧空间.

关键词: 拓扑, 基, 基-次中紧, 完全映射

Abstract: The notion of base-submesocompact spaces is introduced and the nature of the question is discussed: if X is a base-submesocompact space, Y is a closed subset of X, and ω(X)=ω(Y), then Y is a base-submesocompact space. Let X be base-submesocompact space and X′ be an Fσ subset of X, then X′ is base-submesocompact reative to X. Under perfect mapping, the inverse image of base-submesocompact space remains base-submesocompact space.

Key words: topology, base, base-submesocompact, perfect mapping

中图分类号: