兰州理工大学学报 ›› 2024, Vol. 50 ›› Issue (6): 167-172.

• 数理科学 • 上一篇    

笛卡尔积图的r-hued染色

杨晓梅*, 唐梦, 刘博予   

  1. 新疆大学 数学与系统科学学院, 新疆 乌鲁木齐 830017
  • 收稿日期:2023-03-14 出版日期:2024-12-28 发布日期:2025-01-13
  • 通讯作者: 杨晓梅(1980-),女,新疆乌鲁木齐人,博士,讲师.Email:yxm_xju@126.com
  • 基金资助:
    国家自然科学基金(11961067)

On r-hued coloring of Cartesian product graphs

YANG Xiao-mei, TANG Meng, LIU Bo-yu   

  1. College of Mathematics and System Sciences, Xinjiang University, Urumqi 830017, China
  • Received:2023-03-14 Online:2024-12-28 Published:2025-01-13

摘要: Gr-hued色数χr(G)是图G的所有(k,r)-染色中最小的k.图G和图H的笛卡尔积图GH,即顶点集为V(GV(H)的图,若(u,v)与(x,y)相邻当且仅当u=x,vyE(H)或v=y,uxE(G).讨论圈的平方图与路的笛卡尔积图C2mPnr-hued染色问题,运用构造法,通过图C2mPn的结构关系确定了r=2及r=3时C2mPnr-hued 色数.

关键词: 路, 圈的平方图, 笛卡尔积图, r-hued染色

Abstract: The r-hued chromatic number of a graph G is the minimum number k of all (k,r)-colorings, denoted by χr(G). The Cartesian product of G and H is denoted by GH with vertex set V(GV(H), where two vertices (u,v) and (x,y) are adjacent if and only if either u=x and vyE(H) or v=y and uxE(G). The r-hued chromatic number of the Cartesian product graph C2mPn is discussed. By applying a constructive method and considering the structural relationships of C2m□Pn, the r-hued chromatic number of C2mPn is obtained for r=2,3.

Key words: path, square graph of cycles, Cartesian product graph, r-hued coloring

中图分类号: