兰州理工大学学报 ›› 2025, Vol. 51 ›› Issue (3): 156-160.

• 数理科学 • 上一篇    下一篇

半群BI(n,r)的极大(完全)独立子半群

罗永贵*, 肖坚, 余江慧   

  1. 贵州师范大学 数学科学学院, 贵州 贵阳 550025
  • 收稿日期:2023-05-04 出版日期:2025-06-28 发布日期:2025-06-30
  • 通讯作者: 罗永贵(1985-),男,贵州安顺人,副教授.Email:luoyonggui417@126.com
  • 基金资助:
    国家自然科学基金(11861022)

Maximal (completely) isolated subsemigroups of semigroup BI(n,r)

LUO Yong-gui, XIAO Jian, YU Jiang-hui   

  1. College of Mathematical Sciences, Guizhou Normal University, Guiyang 550025, China
  • Received:2023-05-04 Online:2025-06-28 Published:2025-06-30

摘要: 设In和Sn分别为有限集Xn={1,2,…,n}上的对称逆半群和对称群.对0≤r≤n-1,令I(n,r)={α∈In:|im(α)|≤r},则I(n,r)是对称逆半群In的双边理想.记Bn=〈δn〉,其中对任意的i∈Xn有iδn=n+1-i,称Bn为Xn上的循环群.通过分析半群BI(n,r)=I(n,r)∪Bn的格林关系及生成关系,获得了半群BI(n,r)的(完全)独立子半群的完全分类.进一步,证明了半群BI(n,r)的极大独立子半群与极大完全独立子半群是一致的.

关键词: 对称逆半群, 对称群, 循环群, (完全)独立子半群, 极大(完全)独立子半群

Abstract: Let In and Sn be symmetric inverse semigroup and symmetric group on the finite set Xn={1,2,…,n}, respectively. For 0≤r≤n-1, put I(n,r)={α∈In:|im(α)|≤r}, then the I(n,r) is a two-sided ideals of symmetric inverse semigroup In. Denote Bn=〈δn〉, where there is i δn=n+1-i for any i∈Xn, saying that Bn is a circle group on Xn. By analyzing the Green’s relation and generative relation of the semigroup BI(n,r)=I(n,r)∪Bn, the complete classification of the (completely) isolated subsemigroups of BI(n,r) is obtained. Furthermore, the coincide of maximal isolated subsemigroups and maximal completely isolated subsemigroups of BI(n,r) be proved.

Key words: symmetric inverse semigroup, symmetric group, circle group, (compeletly) isolated subsemigroups, the maximal (completely) isolated subsemigroups

中图分类号: