兰州理工大学学报 ›› 2025, Vol. 51 ›› Issue (4): 152-156.

• 数理科学 • 上一篇    下一篇

极大外平面图的K1,2-孤立数

高巧灵, 安新慧*   

  1. 新疆大学 数学与系统科学学院, 新疆 乌鲁木齐 830046
  • 收稿日期:2023-06-05 出版日期:2025-08-28 发布日期:2025-09-05
  • 通讯作者: 安新慧(1978-),女,甘肃陇西人,博士,副教授.Email:xjaxh@163.com
  • 基金资助:
    新疆维吾尔自治区重点实验室开放课题(2022D04026)

K1,2-isolation number of maximal outerplanar graphs

GAO Qiao-ling, AN Xin-hui   

  1. School of Mathematics and System Science, Xinjiang University, Urumqi 830046, China
  • Received:2023-06-05 Online:2025-08-28 Published:2025-09-05

摘要: 对于顶点子集SV(G),如果R(S)=V\N[S]的导出子图只包含孤立点和孤立边,称S是图G的一个K1,2-孤立集,图GK1,2-孤立数ι1(G)是GK1,2-孤立集的最小基数.基于坏点个数k与2度顶点个数之间的关系,对n+k利用数学归纳法证明极大外平面图的K1,2-孤立数为$\iota_{1}(G) \leqslant \frac{n+k}{6}$,从而进一步改进了极大外平面图的K1,2-孤立数的上界,其中k是两个连续2度顶点对在哈密顿圈上的距离至少是3的个数.

关键词: 极大外平面图, K1,2-孤立集, 坏点

Abstract: A subset SV(G) is a K1,2-isolating set, if R(S)=V\N[S] have isolated vertices and isolated edges only. The isolation number ι1(G) of G is the minimum cardinality of a isolation set of G. Based on the relationship between the number of bad vertices k and the number of vertices of degree 2, using mathematical induction on n+k, $\iota_{1}(G) \leqslant \frac{n+k}{6}$ is proved for the maximal outerplanar graph G, and the upper bound of K1,2-isolating number is further improved,where k is the number of pairs of consecutive vertices of degree 2 with distance at least 3 on the Hamiltonian cycle.

Key words: maximal outerplanar graph, K1,2-isolating set, bad vertices

中图分类号: