兰州理工大学学报 ›› 2025, Vol. 51 ›› Issue (4): 147-151.

• 数理科学 • 上一篇    下一篇

不连续流的拓扑压

张俊杰1, 梁雅丽2,3, 王威*4   

  1. 1.苏州科技大学 数学科学学院, 江苏 苏州 215009;
    2.上海旅游高等专科学校 酒店与烹饪学院, 上海 201418;
    3.上海师范大学 旅游学院, 上海 200234;
    4.南通理工学院 基础教学学院, 江苏 南通 226002
  • 收稿日期:2023-07-07 出版日期:2025-08-28 发布日期:2025-09-05
  • 通讯作者: 王威(1978-),男,安徽寿县人,副教授.Email:39658255@qq.com
  • 基金资助:
    江苏省研究生科研创新计划(KYCX23_3300),上海市“晨光计划”(20CGB09)

Topological pressure for discontinuous flows

ZHANG Jun-jie1, LIANG Ya-li2,3, WANG Wei4   

  1. 1. School of Mathematical Sciences, Suzhou University of Science and Technology, Suzhou 215009, China;
    2. School of Hospitality and Culinary Arts, Shanghai Institute of Tourism, Shanghai 201418, China;
    3. School of Tourism, Shanghai Normal University, Shanghai 200234, China;
    4. School of General Education, Nantong Institute of Technology, Nantong 226002, China
  • Received:2023-07-07 Online:2025-08-28 Published:2025-09-05

摘要: 给出在不连续半流上拓扑压的定义并研究其在不连续半流上的性质,证明了在连续半流的情况下,这些不连续流的拓扑压定义等价于经典拓扑压的定义.此外,给出了拓扑τ-压定义,并研究其与不连续流上的拓扑压的关系.

关键词: 不连续流, 动力系统, 拓扑τ-压

Abstract: Giving the definition of topological pressure on discontinuous semiflow andstudying its properties on discontinuous semiflow, these definitionsequalling to classical definition are proved in the case of continuous semiflow. In addition, topological τ-pressure is defined and its relationship with topological pressure on discontinuous semiflow is studied.

Key words: discontinuous semiflow, dynamical system, topological τ-pressure

中图分类号: