兰州理工大学学报 ›› 2020, Vol. 46 ›› Issue (1): 162-166.

• 数理科学 • 上一篇    下一篇

一类DGH方程新多辛Fourier拟谱方法

戴红兵1, 王俊杰, 蔡姗姗, 后圆圆   

  1. 普洱学院 数学与统计学院, 云南 普洱 665000
  • 收稿日期:2018-04-18 出版日期:2020-02-28 发布日期:2020-06-23
  • 作者简介:戴红兵(1966-),男,云南普洱人,副教授.
  • 基金资助:
    云南省科学研究基金(2015Y490)

New multi-symplectic Fourier pseudospectral method for a class of DGH equation

DAI Hong-bin, WANG Jun-jie, CAI Shan-shan, HOU Yuan-yuan   

  1. School of Mathematics and Statistics, Pu Er University,Pu Er, 665000, China
  • Received:2018-04-18 Online:2020-02-28 Published:2020-06-23

摘要: 基于Hamilton空间体系的多辛理论研究了DGH方程的数值解法,利用Fourier拟谱方法构造了DGH方程的多辛格式,该格式满足多辛守恒律. 数值算例结果表明该多辛离散格式具有较好的长时间数值稳定性.

关键词: Hamiton系统, Fourier拟谱方法, 多辛算法, DGH方程

Abstract: A numerical solution method of DGH equation was studied based on multi-symplectic theory in Hamilton space system. The multi-symplectic format of DGH equation was constructed with Fourier pseudospectral method and this format met the multi-symplectic conservation law. It was shown by the result of a numeric computation example that this multi-symplectic discrete format would have a better numeric value stability for a long time.

Key words: Hamilton system, Fourier pseudospectral method, multi-symplectic algorithm, DGH equation

中图分类号: