兰州理工大学学报 ›› 2023, Vol. 49 ›› Issue (6): 41-49.

• 机械工程与动力工程 • 上一篇    下一篇

基于多种可再生能源的多联产系统优化配置研究

李金平*1,2,3, 牛轶男1,2,3, 李紫荆1,2,3, 李天澍1,2,3, VOJISLAV Novakovic4, 王春龙1,2,3   

  1. 1.甘肃省生物质能与太阳能互补供能系统重点试验室,甘肃 兰州 730050;
    2.西北低碳城镇支撑技术协同创新中心, 甘肃 兰州 730050;
    3.兰州理工大学 能源与动力工程学院, 甘肃 兰州 730050;
    4.挪威科技大学能源与过程工程系, 挪威 特隆赫姆 NO-7491
  • 收稿日期:2021-12-24 出版日期:2023-12-28 发布日期:2024-01-05
  • 通讯作者: 李金平(1977-),男,宁夏中宁人,博士,教授.Email:lijinping77@163.com
  • 基金资助:
    国家重点研发计划项目(2019YFE0104900),国家自然科学基金(51676094),甘肃省高等学校产业支撑引导项目(2019C-13,2021CYZC-33),兰州市人才创新创业项目(2017-RC-34)

Study on the optimal allocation of co-production system based on multi-renewable energy

LI Jin-ping1,2,3, NIU Yi-nan1,2,3, LI Zi-jing1,2,3, LI Tian-shu1,2,3, VOJISLAV Novakovic4, WANG Chun-long1,2,3   

  1. 1. Key Laboratory of Complementary Energy System of Biomass and Solar Energy, Lanzhou 730050, China;
    2. China Northwestern Collaborative Innovation Center of Low-carbon Urbanization Technologies, Lanzhou 730050, China;
    3. College of Energy and Power Engineering, Lanzhou Univ. of Tech., Lanzhou 730050, China;
    4. Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim NO-7491, Norway
  • Received:2021-12-24 Online:2023-12-28 Published:2024-01-05

摘要: 为提升基于多种可再生能源的多联产系统整体性能,合理的容量配置至关重要.针对基于太阳能、生物质能和空气能的多联产系统,以一次能源节约率最大化、费用年值节约率最大化和二氧化碳减排率最大化作为优化目标,以光伏光热一体化组件、内燃机、空气源热泵的容量为决策变量,采用改进的多目标遗传算法,利用优劣解距离法求解系统最优容量配置.同时,通过算例验证优化模型的可行性,并研究系统经济性能对成本参数的敏感性.结果表明,优化方案在能源、经济、环境各方面都表现出很好的性能,系统的一次能源节约率为29.07%,费用年值节约率为58.15%,二氧化碳减排率为54.30%,且厌氧发酵环节的成本参数对系统经济性能影响较大.

关键词: 可再生能源, 多联产系统, 多目标优化, TOPSIS法

Abstract: In order to improve the overall performance of co-production system based on multi-renewable energy, a reasonable capacity allocation is very important. For the co-production system based on biomass, solar and air energy, the maximization of primary energy saving rate, annual cost saving rate and carbon dioxide emission reduction rate are selected as the optimization functions, and the capacity of PV/T, internal combustion engine and air source heat pump are selected as decision variables. Using the NSGA-Ⅱ algorithm and weight-TOPSIS, the optimal capacity allocation is solved. Finally, the feasibility of the optimization model is validated through illustrative examples, and the sensitivity of system economic performance to cost parameters is explored. The results show that the optimized scheme exhibits excellent performance in energy, economy and environment, with a primary energy saving rate of 29.07%, an annual cost saving rate of 58.15%, and the carbon dioxide emission reduction rate of 54.30%. Furthermore, the cost parameters of anaerobic fermentation have a substantial influence on the economic performance of the system.

Key words: renewable energy, co-production system, multi-objective optimization, TOPSIS

中图分类号: