兰州理工大学学报 ›› 2025, Vol. 51 ›› Issue (4): 60-65.

• 机械工程与动力工程 • 上一篇    下一篇

塔式起重机钢丝绳损伤检测

张堆学*   

  1. 兰州路域产业综合开发有限公司, 甘肃 兰州 730000
  • 收稿日期:2024-01-11 出版日期:2025-08-28 发布日期:2025-09-05
  • 通讯作者: 张堆学(1975-),男,甘肃庄浪人,硕士,高级工程师.Email:740445512@qq.com

Research on damage detection of wire ropes tower cranes

ZHANG Dui-xue   

  1. Lanzhou Luyu Industrial Comprehensive Development Co. Ltd., Lanzhou 730000, China
  • Received:2024-01-11 Online:2025-08-28 Published:2025-09-05

摘要: 塔吊钢丝绳的可靠性直接关乎施工现场工作效率和工作人员生命安全.现有钢丝绳损伤检测主要聚焦损伤类型识别,忽略绳径测量,检测可靠性和效率不高.为此,提出了融合双目立体视觉成像技术与深度学习模型的钢丝绳测量和损伤识别方法.首先,在塔吊起重臂安装双目立体视觉成像装置,采用英伟达B01 IMX209双目立体视觉摄像头获取包含深度信息的钢丝绳损伤图像;然后,基于深度信息聚类法开展钢丝绳精准分割,并利用相似三角形性质实现绳径测量和异常诊断;最后,利用基于深度信息聚类的损伤图像训练ResNet-50模型,并且识别钢丝绳损伤类型.结果表明,ResNet-50模型对6种损伤检测的平均准确率为94.64%,与YOLOv8n、MobileNetV3-v8和GhostNet-v模型相比分别提升了15.01%、28.06%和18.73%.

关键词: 双目立体视觉, ResNet-50, 相似三角形, 深度信息

Abstract: The reliability of tower crane wire rope is directly related to the efficiency of the construction site and the safety of workers. In view of the existing problems of focusing on damage type identification while neglecting rope diameter measurement, leading to insufficient reliability and efficiency of detection, the study proposes a method of wire rope measurement and damage identification integrating binocular stereo vision imaging technology and a deep learning model. Firstly, a binocular stereo vision imaging device is installed on the crane wall of the tower crane, employing an NVIDIA B01 IMX209 binocular stereo vision camera to capture the rope damage images containing depth information. Subsequently, the depth information clustering method is used to carry out the precise segmentation of the wire rope, and the similar triangle principle was used to complete the rope diameter measurement and abnormal diagnosis. Finally, the segmented image based on depth information clustering is used to train the ResNet-50 model to diagnose the specific damage types of steel wire rope. The results show that the average accuracy of the proposed method is 94.64%, which is 15.01%, 28.06% and 18.73% higher than that of YOLOv8n, MobileNetV3-v8, and GhostNet-v models, respectively.

Key words: binocular stereo vision, ResNet-50, similar triangles, depth information

中图分类号: