兰州理工大学学报 ›› 2021, Vol. 47 ›› Issue (3): 162-166.

• 数理科学 • 上一篇    下一篇

四阶弱对称非负张量Z-谱半径的上下界及应用

雷学红*, 许云霞   

  1. 凯里学院 理学院, 贵州 凯里 556011
  • 收稿日期:2020-04-24 出版日期:2021-06-28 发布日期:2021-07-19
  • 通讯作者: 雷学红(1978-),男,河南固始人,硕士,讲师.Email: leixuehong123@163.com
  • 基金资助:
    国家自然科学基金 (11501141),贵州省教育厅青年科技人才成长项目(黔教合KY字[2019]186号,黔教合KY字[2019]189号)

Upper and lower bounds for the Z-spectral radius of fourth-order weakly symmetric nonnegative tensors and their applications

LEI Xue-hong, XU Yun-xia   

  1. College of Science, Kaili University, Kaili 556011, China
  • Received:2020-04-24 Online:2021-06-28 Published:2021-07-19

摘要: 针对四阶张量Z-谱半径的估计问题,利用张量Z-特征值的定义,并结合不等式放缩技巧,给出了四阶弱对称非负张量Z-谱半径的新上下界,改进了现有一些结果.作为应用,由Z-谱半径的上界给出了张量最佳秩一逼近和贪婪秩一更新算法收敛速度的下界,由Z-谱半径的上下界给出了具有非负振幅对称纯态纠缠的几何度量的上下界.

关键词: 四阶张量, Z-特征值, Z-谱半径, 最佳秩一逼近, 量子纠缠

Abstract: For the bounds of fourth-order tensors, by using the definition of Z-eigenvalues of tensors and some techniques of inequalities, new upper and lower bounds for the Z-spectral radius of fourth-order weakly symmetric nonnegative tensors are obtained and proved to be an improvement of some existing result. As applications, new lower bounds for the best rank-one, approximation of tensors and the convergence rate of the greedy rank-one, update algorithm are given, and lower and upper bounds for symmetric pure state with nonnegative amplitudes are obtained by using upper and lower bounds of the Z-spectral radius of tensors.

Key words: fourth-order tensors, Z-eigenvalues, Z-spectral radius, best rank-one approximation, quantum entanglement

中图分类号: