|
|
基于特征选择的集成极限学习机故障辨识方法
马驰, 赵荣珍, 原健辉, 郑玉巧
2025 (2):
44-50.
摘要
(
162 )
PDF(1865KB)
(
20
)
针对传统极限学习机神经网络在处理复杂数据时无法获得最佳分类性能的问题,提出了基于特征选择的集成极限学习机故障辨识方法.首先,选择合适的尺度对振动信号进行粗粒化分解,在不同尺度上计算振动信号的模糊近似熵,并构成高维数据集.然后,通过邻域粗糙集算法对高维数据集进行属性约简,并且采用不同的邻域半径对数据集进行约简,从而产生不同的特征子集,同时将每个特征子集划分为训练集和测试集,进而输入极限学习机进行模式识别.最后,整合多个极限学习机的预测结果,依据相对多数投票法决定最终的辨识结果.实验证明,相比传统极限学习机,该方法可以提高滚动轴承故障类别的辨识精度,使故障分类结果更准确、更有效.
参考文献 |
相关文章 |
计量指标
|